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Abstract

This paper studies the item-to-item recom-
mendation problem in recommender systems
from a new perspective of metric learning via
implicit feedback. We develop and investi-
gate a personalizable deep metric model that
captures both the internal contents of items
and how they were interacted with by users.
There are two key challenges in learning such
model. First, there is no explicit similarity
annotation, which deviates from the assump-
tion of most metric learning methods. Second,
these approaches ignore the fact that items
are often represented by multiple sources of
meta data and different users use different
combinations of these sources to form their
own notion of similarity.

To address these challenges, we develop a new
metric representation embedded as kernel pa-
rameters of a probabilistic model. This helps
express the correlation between items that a
user has interacted with, which can be used to
predict user interaction with new items. Our
approach hinges on the intuition that simi-
lar items induce similar interactions from the
same user, thus fitting a metric-parameterized
model to predict an implicit feedback signal
could indirectly guide it towards finding the
most suitable metric for each user. To this
end, we also analyze how and when the pro-
posed method is effective from a theoretical
lens. Its empirical effectiveness is also demon-
strated on several real-world datasets.

1 Introduction
Item recommendation is one of the fundamental tasks
in a recommender system which is applicable to many
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scenarios such as you may also like on e-commerce plat-
forms (e.g., Amazon, Alibaba) or because you watched
on content streaming services (e.g., Netflix). These
include two specific use cases of (1) user-centric and (2)
item-centric recommendations. In user-centric recom-
mendation, the focus is on recommending items that
fit best with a profile of a target user. In item-centric
recommendation, the focus is instead on recommending
items that are similar to a target item.

To date, most recommendation methods have focused
on the user-centric context of recommending relevant
items to a target user. However, such user-centric meth-
ods are often not suitable for item-centric use cases
since (as mentioned above) their focus is to find items
that fit best with a user’s profile but might not nec-
essarily be similar to the target item that the user is
currently interested in. To the best of our knowledge,
there are very few works devised to tackle item-item
recommendation directly. Most notable works among
those are sparse linear method (SLIM) [29], which was
adapted from user-centric collaborative filtering (CF)
methods [11, 27, 29, 34, 47], and semi-parametric em-
bedding (SPE) [19], which combines elements of both
CF- and content-based methods [25, 28, 30]. But, SLIM
[29] does not make use of meta information while SPE
[19] ignores different similarity notions that we men-
tioned above. In both cases, there is a need to develop
a personalizable item-to-item distance metric that not
only capture the similarities between items across dif-
ferent sources of meta data but also how these channels
are perceived by different users.

This leads us to the problem of metric learning
[1, 3, 21, 24, 44] which aims to learn a distance measure
on the feature space of items that can capture well the
semantic similarities of items on their original input
space [2, 7, 26, 45] (see Section 2). However, most
(deep) metric learning methods were developed out-
side the context of a practical recommendation system
[8, 11, 20, 29, 36] where class labels or even co-view
signals of commercial items are not fine-grained enough
to determine whether two items are similar or not. For
example, two movies might belong to the same genre
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but they are not considered similar due to other traits
such as cast, producer and plot. On the other hand,
co-viewed movies might be driven by an exploration
behavior rather than by their intrinsic similarities [43].
This invalidates vanilla application of existing super-
vised metric learning algorithms. Furthermore, users
tend to have different preferences in forming their own
notion of similarity from different meta information
channel of commercial items. For example, some users
would consider movies from the same genres or the-
matic content to be similar, while others might prefer
movies from specific cast. This invalidates direct uses
of unsupervised methods seeking to preserve a single
geometry of item-to-item similarity since there can be
as many as the number of different users.

Motivation. This motivates us to develop a multi-
channel metric representation that can be learned via
implicit feedback on how good it is towards a down-
stream prediction task. To achieve this, we first propose
and investigate an ensemble construction of multiple
Siamese Twin segments [2] such that each segment com-
prises two identical towers that capture the embedded
similar or dissimilar traits between two input items for
each source of meta data describing a certain aspect of
their internal contents. As there is no direct feedback
to train this metric ensemble, we then use a surrogate
prediction task to provide a self-supervised feedback
for training, which can also be used to personalize the
metric for a user given his or her interaction data.

Key Idea & Contributions. This is achieved by
embedding the ensemble representation as part of the
kernel parameters expressing the correlation between
items within a prediction model, which is fitted to pre-
dict how a user would interact with an item based on
its correlation with previous items that the user has
interacted with. Our approach hinges on the intuition
that similar items would induce similar interactions
from the same user, thus learning an interaction (e.g.,
rating) prediction model based on the metric represen-
tation can implicitly guide it towards capturing the
right metric for each user. In particular, we contribute:

1. An adapted Gaussian process (GP) [33] regression
model whose kernel function is parameterized by an
ensemble of Siamese Twin segments (Section 3.1). The
GP model is fitted to predict the average user rating
of an unseen item given items with observed ratings.
As the correlation is expressed in terms of metric rep-
resentation, a well-fitted GP would be encouraged to
find a well-behaved metric that correctly preserves the
averaged similarity geometry of items.

2. A personalization scheme that warps the averaged
similarity geometry of items into a personalized one
that better fits each specific user (Section 3.2) via

optimizing the combining coefficient of the ensemble.
This makes sense since the content extracted from
different meta-data channels is user-agnostic, leaving
only the combining parameters user-dependent.

3. A theoretical analysis (Section 4) that analyzes
the effectiveness of the proposed self-supervised metric
learning algorithm in terms of the statistical relevance
between the surrogate prediction task (e.g., rating pre-
diction) and the true (unknown) item-to-item metric.
Our results (Theorems 1 and 2) show that under rea-
sonable assumptions, the learned metric is close to the
true metric with high probability if there is a sufficient
amount of observations from the surrogate function.

4. An empirical evaluation of the proposed method on
an experimentation benchmark comprising the several
public datasets such as the MovieLens [9] and Yelp
Review datasets (Section 5).

2 Related Work

2.1 Metric Learning and Siamese Network

One prominent line of research in metric learning fo-
cuses on supervised methods [1, 5, 10, 22, 24, 44, 48, 49]
which assume there exist training examples of similar
and dissimilar items are available. The metric learn-
ing task is thus reduced to learning a scoring function
that pushes down on similar pairs while pushing up on
dissimilar pairs. One notable example of such metric
learning method is the Siamese network which can be
learned via optimizing a contrastive loss.

Siamese Network. As developed in [2], Siamese net-
work has a two-tower architecture that was specifi-
cally devised for contrastive learning. In a nutshell, a
Siamese net is expected to accept a pair of input items
(xa,xb) and output a numeric distance between them
or a probability that they are dissimilar. For a pair of
similar items, we expect this distance or probability to
be small and conversely, for dissimilar items, we expect
it to be sufficiently large (i.e., above a certain margin).

To achieve this, the Siamese net has two identical net-
work segments, Fa(x;γ) ≡ F(x;γ) and Fb(x;γ) ≡
F(x;γ), whose outputs, za = F(xa;γ) and zb =
F(xb;γ) reside in a metric space Rp equipped with a pa-
rameterized distance D(za, zb) = (za − zb)

>Λ(za − zb)
where Λ = diag[λ1, λ2, . . . , λp]. Thus, given a pair
(xa,xb), the output of the Siamese net is D(xa,xb) =(
F
(
xa;γ

)
−F
(
xb;γ

))>
Λ
(
F
(
xa;γ

)
−F
(
xb;γ

))
(1)

Then, suppose training examples ((xia,xib), y
i
ab)

n
i=1 are

available where yiab = 0 indicate (xia,x
i
b) is a pair of

similar items and otherwise for yiab = 1. The parame-
terization of the metric net, γ and Λ, can be learned
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via optimizing the following contrastive loss,

L
(
γ,Λ

)
=

n∑
i=1

[(
1− yiab

)
D
(
xia,x

i
b

) ]

+

n∑
i=1

[
yiabmax

(
0, τ −D

(
xia,x

i
b

) )]
(2)

where τ is a contrastive margin such that the distance
for dissimilar pairs are encouraged to be increased up
to τ but not more than that. This implies forcing the
distance between a dissimilar pair to be more than
τ only yields diminishing gain in improving the dis-
criminative capacity of the model. Thus, the loss is
zeroed out in such cases to focus on minimizing the
gap between the other similar pairs.

2.2 Gaussian Processes

A Gaussian process [33] defines a probabilistic prior
over a random function g(x). This prior is in turn
defined by a mean function m(x) = 01 and a kernel
function k(x,x′). Such prior stipulates that for an ar-
bitrary finite subset of inputs {x1,x2, . . . ,xn}, the cor-
responding output vector g = [g(x1) g(x2) . . . g(xn)]

>

is distributed by a multivariate Gaussian, g ∼ N(0,K).

Here, the entries of the covariance matrix K are com-
puted using the aforementioned kernel function. That
is, Kij = k(xi,xj) where common examples of k(xi,xj)
are detailed in [33] but in practice, the exact choice of
the kernel function usually depends on the application.
To predict with GP, let x∗ be an unseen input whose
corresponding output g∗ = g(x∗) we wish to predict.
Then, assuming a noisy setting where we only observe
a noisy observation r(x) ∼ N(g(x), σ2) instead of g(x)
directly, the predictive distribution of g∗ is:

g∗ , g(x∗) | r ∼ N
(
k>∗ (K + σ2I)−1r, k(x∗,x∗)

− k>∗ (K + σ2I)−1k∗

)
, (3)

where r = [r(x1) . . . r(xn)]
>. The defining parameter

ψ of k(x,x′) is crucial to the predictive performance
and needs to be optimized via minimizing the negative
log likelihood (NLL) of r [33],

`(ψ) ∝ 1

2
log
∣∣∣Kψ + σ2I

∣∣∣+ 1

2
r>
(
Kψ + σ2I

)−1
r (4)

In the above, we use the subscript ψ to indicate that K
is parameterized by ψ which, in our case, is the param-
eterization of a Siamese network (Section 2.1). In prac-
tice, both training Θ and prediction incur O(n3) cost.
For better scalability, there have been numerous devel-
opments on sparse GPs [12, 14, 15, 16, 23, 42] whose
computation are only linear in n (see Appendix G).

1For simplicity, we assume a zero mean function since
we can always re-center the training outputs around 0.

3 Metric Learning via Gaussian
Process with Siamese Kernel

We will formalize our intuition (Section 1) of self-
supervised learning (SSL) of item-to-item metric,
namely the SSL metric, in Section 3.1. We will then
show how such SSL metric can also be personalized
for each user via minimizing a new loss function as
proposed in Section 3.2.

3.1 Self-Supervised Metric Learning with
Gaussian Processes

Let r(x) denote a related prediction target of item x
whose training examples {(xi, r(xi))}ni=1 are readily
available from our data. For example, r(x) can be
an averaged review score for x, which aggregates the
ratings given to x by the users who interacted with it.
Our goal is to build a prediction model such that for
an unseen item x∗, its prediction r̂(x∗) is largely based
on its metric-based correlation with the training items
x1,x2, . . . ,xn. This is the standard prediction pattern
of kernel-based methods such as Gaussian process (GP).
To substantiate this, we parameterize the kernel func-
tion of the GP prior using the aforementioned Siamese
network (Section 2.1) as detailed below,

k
(
xa,xb;ψ

)
= exp

(
−1

2
D (xa,xb)

)
(5)

where D(xa,xb) is defined in Eq. (1). Here, the kernel
parameterization ψ = {Λ,γ} consists of two parts.
First, γ denotes the defining parameters of the network
segment that maps x to a vector in a metric space.
Second, Λ specifies the correlation and unit scales
across different dimensions of the metric space. For
example, if we choose Λ to be the diagonal matrix, then
the dimensions of the metric space are uncorrelated
and their unit scales are the elements on the diagonal of
Λ. Then, given training examples {(xi, ri)}ni=1 where
ri ∼ N(r(xi), σ2) are the noisy observations of r(xi)
perturbed with Gaussian noises, the metric parameters
can be optimized via minimizing

`(ψ) =
1

2
log
∣∣∣Kψ + σ2I

∣∣∣+ 1

2
r>
(
Kψ + σ2I

)−1
r (6)

with respect to ψ and σ where r = [r1 r2 . . . rn]
> and

ψ , {Λ,γ}. Here, Eq. (6) is the same as Eq. (4) except
for that entries of Kψ were computed by Eq. (5) above.
We will demonstrate later in Section 5 that training
{Λ,γ} using Eq. (6) is more effective than fitting them
using Eq. (2) which requires direct feedback that cannot
be acquired without incurring considerable label noise.

Key Result: We will also show in Section 4 below (see
Theorem 1 and Theorem 2) that assuming a certain
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statistical relationship (see A1-A3) between r and the
true metric D∗(x,x

′), the learned SSL metric D(x,x′)
via fitting Eq. (6) is arbitrarily close to D∗(x,x

′) if the
number of observations n is sufficiently large.

3.2 Learning Personalizable Metric with
Gaussian Processes

Furthermore, to account for multiple different sources
of meta data describing an item that lead to different
user preferences over their uses in combination, we first
extend the above Siamese network architecture into an
ensemble construction of multiple Siamese segments.

Siamese Ensemble. Let x = (x(1),x(2), . . . ,x(p))
denote its multi-view representation across p different
meta channels where x(i) denote x’s description in
channel i. The Siamese ensemble is D (xa,xb) =

σ

([
D1

(
x(1)
a ,x

(1)
b

)
, . . . ,Dp

(
x(p)
a ,x

(p)
b

)]>
h + b

)
(7)

where σ(z) = 1/(1 + exp(−z)) denotes the sigmoid
function while w = (h, b) where h ∈ Rp and b ∈ R
are learnable weights that aggregate the individual
Siamese distances into a single distance metric. In
our personalized context, the metric computation for
each user u shares the same set of Siamese individual
distance functions (and their parameterizations) but
differs in how these individual Siamese distances were
combined via different choices of w← wu = (hu, bu).

Learning Personalizable Metric. First, we ob-
serve that the parameterization ψi = (γi,Λi) of each
Siamese segment Di is user-agnostic since the intrinsic
similarities between items across single channels are
not user-dependent. The personalization must there-
fore concern only ensemble parameterization w← wu.
This raises the question of how can we build a person-
alizable parameterization which can be fast adapted to
an arbitrary user with limited personal data?

To address this question, one ad-hoc choice is to reuse
the self-supervised learning recipe in Section 3.1 to
optimize for w = (h, b), which can be achieved by re-
configuring the kernel function k(x,x′) in Eq. (5) with
the ensemble distance D in Eq. (7) and minimizing the
following NLL loss `(ψ,w) =

1

2
log
∣∣∣K(ψ,w) + σ2I

∣∣∣+ 1

2
r>
(
K(ψ,w) + σ2I

)−1
r . (8)

with respect to w, while fixing ψ = (ψ1, . . . ,ψp). The
resulting w can then be re-fitted for each user u via
another pass of the algorithm in Section 3.1 using only
observations ru from u’s individual surrogate function
ru(x). This approach however does not optimize for
how fast w can be adapted (on average) for a random

user u with limited data. To account for this, we instead
minimize the following post-update, personalized loss
function over q users – see its intuition below Eq. (10),

L(w) =
1

q

q∑
u=1

[
`u(ψ, κu(w))

]
(9)

where `(ψ,w) is defined in Eq. (8) above and
`u(ψ, κu(w)) is identical in form to `(ψ) except for
the fact that it is parameterized by wu = κu(w) (in-
stead of w) and computed based on local observations
ru (instead of r). Here, κu(w) denotes a personaliza-
tion procedure that minimizes `u(ψ,w) for each user
u, which can be represented in the following form,

κu(w) = κ(t)u (w) , κ(t−1)u (w)

+ ω · ∇w`
(
κ(t−1)u (w)

)
(10)

and κ
(0)
u (w) = w. Here, we drop ψ from the argu-

ment of `u(ψ,w) since it is clear from context and is
fixed. This encompasses the t-step gradient update
procedure that aims to numerically minimize `u(w)
with w being the initializer and ω denote the learning
rate. Intuitively, minimizing Eq. (9) means finding a
vantage point w that are most effective for personaliza-
tion. That is, starting at w, the local update procedure
κu(w) can arrive at an effective parameter configura-
tion that reduces the local loss `u(w) the most. This
generic form, however, poses a challenge since the gra-
dient ∇wL might not be tractable since κu(w) might
not exist in closed-form.

Key Idea: To address this, note that the vector-
value function κu(w) can be represented as κu(w) =
[κ1u(w) . . . κp+1

u (w)] where we have dim(w) = dim(h)+
dim(b) = p+ 1. We can then approximate each com-
ponent with a 2nd-order Taylor expansion around 0
and show that under such expansion, ∇wL can be com-
puted, which allows L to be minimized via Lemma 1.

Lemma 1. Assuming κiu(w) is twice-differentiable at
w = 0, the approximation of κiu(w) with its 2nd-order
Taylor expansion around w = 0 induces ∇wL(w+) =

1

q

q∑
u=1

([
Dwκu(w+)

]
∇w`u

(
κu(w+)

))
(11)

with Dwκu(w+) ,
[
∇>wκ1u(w+); . . . ;∇>wκp+1

u (w+)
]

whose rows are approximated via

∇wκ
i
u

(
w+

)
' ∇wκ

i
u

(
0
)
+
[
∇2

wκ
i
u

(
0
)]

w+ (12)

Lemma 1 implies that if ∇w`(w+) and ∇w`u(w+)
are tractable; and ∇wκ

i
u(w+) and ∇2

wκ
i
u(w+) are

tractable at w = 0 then the gradient of L(w) is also



Hoang, Deoras, Zhao, Li, Karypis

approximately tractable at any w+, thus mitigating
the lack of a closed-form expression for κu(w). Here,
the tractability of ∇w`(w+) and ∇w`u(w+) is evident
from their analytic form in Eq. (8) while the tractabil-
ity of ∇wκ

i
u(w+) and ∇2

wκ
i
u(w+) at w+ = 0 along

with the rest of the proof is deferred to Appendix B.

Note that for simple choices of κu(w), Dwκu(w+) can
be computed analytically to bypass this approximation.
For instance, in our experiment, we choose κu(w) =
w − ω∇w`u(w). It then follows that Dwκu(w+) =
I − ω∇2

w`u(w+) which is exact and tractable. This
leads to a simpler expression for Eq. (11), which also
mimics the meta-update equation in meta learning [6].

4 Theoretical Analysis

This section analyzes the effectiveness of the proposed
self-supervised metric learning algorithm (Section 3.1)
from a theoretical lens, which aims to shed insights
on when and how the induced metric approximates
accurately. In essence, our main results, Theorems 1
and 2, show that under reasonable assumptions, the
induced metric D(x,x′) of our algorithm is arbitrarily
close to the true (unknown) metric D∗(x,x

′) with high
probability if it can observe a sufficiently large number
n of observations from the surrogate training feedback
r(x). Our assumptions are first stated below.

Assumptions. Let D∗(x,x
′) denote the (unknown)

true metric function and k∗(x,x
′) = exp(−0.5 ·

D∗(x,x
′)) denote the oracle kernel parameterized by

the true metric. Then:

A1. There exists a constant value d > 0 for which
d · inf k∗(x,x′) ≥ λmax(K∗) where λmax(K∗) denote
the largest eigenvalue of the Gram matrix induced by
k∗ on {x1,x2, . . . ,xn}.

A2. Let r̂ = [r̂(x1), . . . , r̂(xn)]
> denote the GP predic-

tion of r = [r(x1), . . . , r(xn)]
> using the learned kernel

function k(x,x′) – see Eq. (5)2, there exists a non-
negative constant α s.t. sup

(x,x′)

|k(x,x′)− k∗(x,x′)| ≤

1 − α ·

((
r− r̂

)>
A
(
r− r̂

))−1
(13)

where A =
1

n

(
K + σ2I

)2 and K is the Gram matrix
induced by k(x,x′) on {x1,x2, . . . ,xn}.

A3. Let r = [r(x1), r(x2), . . . , r(xn)]
> and K∗ be

defined as above. We assume r ∼ N(0,K∗). This is
key to establish our main results in Theorems 1 and 2.

2As it is clear from context, we drop the parameterization
notation ψ from this point onward for simplicity.

Remark. Here, assumptions A1 and A2 state that
the oracle kernel is bounded from below (A1) and
the discrepancies between the approximate and oracle
kernel are bounded above with a ceiling no more than 1
(A2). These are reasonable assumptions which can be
realized in most cases given that by construction, the
range of values for both kernel functions is between 0
and 1. Last, while A3 imposes a stronger assumption
on the statistical relationship between the surrogate
training feedback r(x) and oracle kernel K∗, this is
also not unreasonable given that in many situations,
there also exists many feature signals that are both
normally distributed and are directly related to the
similarities across input instances, e.g. measurements
of height/weight among people.

Under these assumptions, we can now state our key
results which provably demonstrates how well the self-
supervised learning metric can approximated the true
metric, and under what conditions. Our strategy to
address these questions are first described below.

Analysis Strategy. First, we aim to establish that if
the maximum multiplicative error in approximating the
oracle kernel (parameterized by the true metric) with
the induced kernel (parameterized by the metric learned
by our algorithm) can be made arbitrarily small, the
same can also be said about the discrepancies between
the true and learned metric (see Lemmas 2 and 3).

Then, we further establish that while the maximum
multiplicative error between kernels is not always small
with 100% certainty, the probability that it is large is
vanishingly small as the size of the dataset increases
(Theorem 1). This implies the results of Lemmas 2 and
3 can be invoked with high chance, guaranteeing that
the metric discrepancies can be made vanishingly small
with high probability. This is formalized in Theorem 2,
which also details the least amount of data necessary
for such event to happen.

Formal Results. To begin our technical analysis, we
start with Lemma 2 below which shows that if the
ratio between the true and approximate kernel values,
k∗(x,x

′) and k(x,x′), can be made arbitrarily close at
(x,x′) then the approximated distance metric is also
arbitrarily close at (x,x′).

Lemma 2. Suppose (1 − ε)·k∗(x,x′) ≤ k(x,x′) ≤
(1 + ε) · k∗(x,x′) for ε ∈ (0, 1) then∣∣∣D(x,x′)−D∗(x,x

′)
∣∣∣ ≤ 2 log

(
1

1− ε

)
. (14)

The result of Lemma 2, which is formally proved in
Appendix C, suggests a direct strategy to guarantee the
metric approximation is close to zero simultaneously
for all pair (x,x′), as formalized in Lemma 3.
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Lemma 3. Suppose sup
(x,x′)

∣∣∣∣k(x,x′)− k∗(x,x′)k∗(x,x′)

∣∣∣∣ ≤ ε

for ε ∈ (0, 1) then

∀(x,x′) :
∣∣∣D(x,x′)−D∗(x,x

′)
∣∣∣ ≤ 2 log

(
1

1− ε

)
(15)

Enforcing the premise of Lemma 3 – see its proof in
Appendix D – however, is not always possible as it
depends on the randomness in which we obtain our
observations of the surrogate training feedback r(x).
This raises the following questions:

How likely this happens and how many obser-
vations are sufficient to guarantee that such
premise would happen with high chance?

These are addressed in Theorems 1 and 2 below.

Theorem 1. Let g(τ) , log(τ) + (1/τ)− 1 and cε ,
ελmax(K∗)/d, we have

Pr

(
sup
(x,x′)

∣∣∣∣k(x,x′)− k∗(x,x′)k∗(x,x′)

∣∣∣∣ ≥ ε
)

≤ exp

(
−1

2
n · g

(
σ4

α

(
1− cε

)
λmax

(
K∗

)))
(16)

where the constants d and α are defined in A1 and A2
above respectively. The detailed proof of Theorem 1 is
deferred to Appendix E. In addition, we note that g(τ)
is non-negative so the RHS of Eq. (16) is no greater
than 1, ensuring that the bound is not vacuous.

Theorem 1 therefore establishes that the premise of
Lemma 3 will happen with a high probability with a
sufficiently large value of n, thus asserting its implica-
tion of Lemma 3 with high chance. This guarantees
the discrepancy between the learned and true metric
at any pair (x,x′) can be made arbitrarily small with
a large value of n. This is formalized below.

Theorem 2. Let g(τ) = log(τ) + (1/τ)− 1 and gε =

g

(
σ4

α

(
1− λmax

(
K∗

) ε
d

)
λmax

(
K∗

))
. Then,

Pr

(
sup
(x,x′)

∣∣∣D(x,x′)−D∗(x,x
′)
∣∣∣ ≤ 2 log

(
1

1− ε

))
≥ 1 − δ (17)

when n ≥ 2
gε

log 1
δ and δ ∈ (0, 1) is an arbitrarily

small confidence parameter. Theorem 2 can be derived
from Theorem 1 by setting the RHS of Eq. (16) to an
arbitrarily small value δ, solving for n and following
up with direct application of Lemma 3. Its proof is
deferred to Appendix F.

Theorem 2 thus concludes our analysis with the follow-
ing take-home message: Under reasonable assumptions
in A1, A2 and A3, the metric induced by our self-
supervised learning algorithm is vanishingly close to
the true metric with arbitrarily high probability pro-
vided that we have access to a sufficiently large dataset
of the surrogate training feedback r(x). The statistical
relation between this surrogate feedback and the true
metric as stated in A3 is key to establish this result.

5 Experiment

We evaluate our proposed self-supervised and personal-
ized metric learning algorithms on the MovieLens [9]
and Yelp review dataset3. A short description of the
datasets is provided below.

MovieLens Dataset [9]. The dataset comprises
26K+ items which were interacted with by 138K+
users. Each interaction is a triplet of user, item and
timestamp which is measured in seconds with respect
to a certain point of origin in 1970. There are about
20M of such interactions and in addition, the dataset
also provides multiple channels of meta data per item in
various formats such as categorical (genre), numerical
(rating) and text (plot and title). Here, representa-
tions of categorical and text features are multi-hot and
pre-trained BERT4 [4] embedding vectors, respectively.

Yelp Review Dataset3. The dataset comprises 8M+
reviews given to businesses by customers. Here, we
treat the businesses as items and customers as users.
There are approximately 160K+ businesses (items)
and about 2M+ customers (users). For each business,
we have meta data regarding its averaged rating and
business categories. The latter of which is represented
as a multi-hot vector ranging over 1300+ categories
(e.g., Burgers, Mexican and Gastropubs).

Both datasets were pre-processed using the same proce-
dure as described in Section A.1. In what follows, our
experiments aim to address the following key questions:

Q1. Does the induced metric via self-supervised learn-
ing (Section 3.1) improve over the vanilla metric in-
duced from optimizing a Siamese network on noisy
annotations of similar pairs of items?

Q2. Does such SSL induced metric can be further
personalized (Section 3.2) to fit better with a user’s
personal notion of similarity, which often varies sub-
stantially across different users?

3https://www.yelp.com/dataset/download
4Text descriptions of title and plot were embedded sep-

arately into a 768-dimensional space by the Google’s pre-
trained BERT model [4] released at https://huggingface.
co/bert-base-uncased.

https://huggingface.co/bert-base-uncased
https://huggingface.co/bert-base-uncased
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Figure 1: Plots of the averaged MRR, NDCG and HR measurements (over 5 independent SSL runs) of our SSL
metric when it was used to produce a top-10 recommendation list for each unseen test item from the MovieLens
dataset. The corresponding measurements of SPE and Siamese baselines were also included as references. These
measurements however do not improve with more iterations as SPE and Siamese are non-SSL.

Figure 2: Plots of the averaged MRR, NDCG and HR measurements (over 5 independent SSL runs) of our
SSL metric evaluated on YELP dataset. The performance of SPE and Siamese baselines were also included as
references. These measurements however do not improve with more iterations as SPE and Siamese are non-SSL.
Similar to our experiments with the MovieLens dataset, the MRR, NDCG and HR measurements are computed
with respect to top-10 recommendation lists produced by the participating baselines on the same unseen test set.

Evaluation. Once learned, the item-to-item metric is
used to rank the items in the list of candidates (i.e.,
the entire item catalogue) in the decreasing order of
their similarities to a test item. For each test item,
the quality of the resulting ranked list can then be
assessed via standard ranking measurements such as
mean reciprocal rank (MRR), hit rate (HR) and nor-
malized discounted cumulative gain (NDCG). These
are described below.

Measurement Description. To evaluate the effi-
ciency of an item metric D on a specific item x, we
use it to compute the distance between x and every
other item x′ in the catalogue. The top k = 10 closest
items {x′1, . . . ,x′k} based on their computed distances
to x are then extracted. Let G(x) denote the set of
similar items to x, the following quality measurements
are computed to assess D:

HR@K. The HR@K (or hit rate at k) measurement
of D at test item x is

HRk

(
{x′i}ki=1;x

)
, k−1

k∑
i=1

I
(
x′i ∈ G(x)

)

where {x′1, . . . ,x′k} represent the top k items suggested
by the recommender (in decreasing order of relevance
to the test item x). The average HR@K is computed
by averaging over items in a test set.

MRR@K. The MRR@K (or mean reciprocal rank at
k) measurement of D at x is

MRRk

(
{x′i}ki=1;x

)
,
(
argminki=1{x′i : x′i ∈ G(x)}

)−1
or 0 if none of the items in the recommendation is
in G(x). The average MRR@K is then computed by
averaging over items in a test set.

NDCG@K. First, the DCG@K – discounted cumula-
tive gain at k – measurement of D at x is

NDCGk

(
{x′i}ki=1;x

)
, I

(
x′1 ∈ G(x)

)
+

k∑
i=2

I
(
x′i ∈ G(x)

)
· log−12 [i]

The NDCG@K – normalized discounted cumulative
gain at K – is then obtained by dividing DCG@K to
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the maximum achievable DCG@K by a permutation
of items in the recommendation list. The average
NDCG@K is computed by averaging over the test set.

The overall assessment of the item-to-item metric is
then computed by averaging the above measurements
over the set of test items. Here, the test items are
those whose 1st interaction happens after a timestamp
(hence, not visible to the learning algorithms) which
was set so that the test set comprises about 5% of the
entire item catalogue.

To set the ground-truth for item-to-item recommenda-
tion, we deem two items similar if they were interacted
with by the same users within a time horizon. Other-
wise, they are deemed dissimilar. Here, we also note
that unlike user-item truths, item-item truths acquired
in this fashion are undeniably noisy so during training,
we further make use of a downstream prediction task
that (presumably) correlates well with the oracle item-
item truths. To our intuition, rating prediction in the
case of movies does appear to correlate with item simi-
larities, which explains for the improved performance
of our SSL method as reported in Section 5.1 below.

All experiments were run on a computing server with
a Tesla V100 GPU with 16GB RAM. For more in-
formation regarding our experiment setup and data
pre-processing, please refer to Appendix A.

5.1 Self-Supervised Metric Learning

To answer Q1, we evaluate the performance of the
item-to-item metrics generated by (1) optimizing the
vanilla Siamese ensemble (SIAMESE) combining the
meta information channels (including ratings) of the
items; (2) optimizing the more recently proposed SPE
method [19] using ratings as side information and other
channels as content; and (3) optimizing the GP with
Siamese kernel (SSL), which is initialized with the
Siamese ensemble generated in (1), using averaged
ratings of the items. The results were averaged over 5
independent runs and reported in Figure 1 and Figure 2.

It is observed from both Figure 1 and Figure 2 that
our SSL metric becomes increasingly better and out-
performs both the semi-parametric embedding (SPE)
and SIAMESE baselines significantly (across all mea-
surements) after 3000 iterations. This provides strong
evidence to support our intuition earlier (Section 1)
that as we implicitly express the correlation between
items in terms of the metric representation that param-
eterizes a GP model, a well-fitted GP would induce a
well-shaped metric that preserves the averaged simi-
larity geometry of items, which is consistent with our
theoretical analysis in Section 4.

5.2 Personalized Metric Learning

Though we obtain positive evidence in Section 5.1 that
our SSL-induced metric improves significantly over all
baselines, this is measured on the average over the entire
user population rather than on each individual user. In
the former context, as long as two items A and B are
both interacted with by a user in the population, they
are considered similar. But, in the (latter) context of a
single user, A and B might not be considered similar if
the user never interacts with both of them. In this case,
we are interested in understanding how well our SSL
metric would perform with and without personalization
(see Q2), especially on users with limited data. To
shed light on this matter, we sample a subset of 20
users with fewer than 200 (but no fewer than 20) item
interactions. We then compute a personalizable metric
based on the previously computed SSL-induced metric
via minimizing Eq. (9). The personalizable metric is
then tuned to fit each user’s individual rating data
using the SSL recipe in Section 3.1.

The MRR, NDCG and HR measurements of the metric
(before and after 2000 personalization iterations on the
MovieLens dataset) are reported in Figure 3 and Fig-
ure 5. Our observations are as follows: (1) on average
(over 20 users), the personalized metric consistently
shows a sheer improvement over its SSL base in Fig-
ure 5; (2) on an individual basis, the personalized MRR,
NDCG and HR measurements improve significantly on
16/20, 17/20 and 17/20 users, resulting in success rates
of 80%, 85% and 85% (see Figure 3).

We also evaluate and report the individual personal-
ized MRR, NDCG and HR measurements on the Yelp
Review dataset for a sampled group of 20 users in
Figure 4. In most individual cases, it can again be
seen that the personalized metric also improves over
the base metric (see Fig. 4). These observations are
therefore all consistent with our early observations on
the MovieLens dataset.

Remark. Note that, these are averaged measurements
over the selected users. For each individual, the mea-
surement is computed based only on the corresponding
user’s personal co-interaction data, rather than on the
co-interaction data over the entire population. Thus,
this is a stricter performance measurement in compari-
son to that of Section 5.1, and expectedly so to evaluate
personalized performance.

6 Conclusion

This paper develops a self-supervised learning method
for item-item metric distance in the context of a recom-
mendation system where direct training examples are
not readily available. The developed method instead
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Figure 3: Bar charts of the individual MRR, NDCG and HR measurements of a set of 20 randomly sampled users
with fewer than 200 interactions with items in the catalogue. Red (blue) columns reflect the measurement (MRR,
NDCG and HR) of the personalized (base) SSL metric on those users.

Figure 4: Bar charts of the individual MRR, NDCG and HR measurements of our SSL metric on a set of randomly
sampled users with fewer than 200 interactions with items in the catalogue. Red (blue) columns reflect the quality
measurement (MRR, NDCG and HR) of the personalized (base) SSL metric on those users.

Figure 5: Plots of the MRR, NDCG and HR measurements of our personalized metric over 2000 personalization
iterations on the MovieLens dataset. Our personalized metric was evaluated separately on each user and the
plotted results were averaged over 20 users. Here, its performance measurements on each individual user is
computed using only the user’s personal co-interaction data, rather than the co-interaction data over the entire
population, which is stricter and expectedly so to evaluate personalized performance.

embed the metric representation as kernel parameters
of a Gaussian process prediction model, which is then
fitted to predict a user-item interaction function whose
training examples are more readily available.

Our approach builds on the intuition that similar items
would induce similar interactions from the same user,
thus learning an interaction prediction model that ex-
presses its prediction in terms of item-item similarities
can implicitly guide it towards capturing the right met-
ric. This also reveals a principled method to personalize

the item-to-item metric for each user. We show that
theoretically, our learning model can recover the right
metric up to a certain error threshold with high proba-
bility in the limit of data. Its empirical effectiveness is
also demonstrated on several real-world datasets.

Societal Impact. Though applications of our work
to real data could result in ethical considerations, this
is an unpredictable side-effect of our work. We use
sanitized public datasets to evaluate its performance.
No ethical considerations are raised.
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Supplementary Material:
Learning Personalized Item-to-Item Recommendation

Metric via Implicit Feedback

A Additional Experimental Details

A.1 Experiment Setup

In our experiment setup, each dataset is pre-processed
in the following forms that describe separately the
item’s behavior data (e.g., user-item interactions) and
its content information (e.g., the meta data of an item
that is user-independent). This includes:

Interaction Data. This is a collection of tuples (user,
item, rating, timestamp), each of which describes an
event where a user gives an item a certain rating at a
certain time marked by timestamp. Here, the times-
tamp is in seconds counting from a certain origin in the
past. For example, the time origin of the MovieLens
dataset is at midnight (UTC) of January 1, 1970.

Meta Data. This comprises multiple channels of dif-
ferent meta data. Each channel is a collection of pairs
(x,v) where x is the item identification (e.g., a movie
ID in a database) and v is either a scalar, multi-hot
vector or a dense embedding vector representing a nu-
merical feature, a categorical feature and an embedding
of a text feature. For example, movie ratings would
be represented as scalars, movie genres would be rep-
resented by multi-hot vectors, whose dimension is the
total number of genres. Movie title and/or description
would be represented by a 768-dim embedding vector
generated by Google’s pre-trained BERT [4] models.

Noisy Annotations of Similar (Dissimilar) Pairs.
To train a Siamese Net that captures the similari-
ties between items, the standard method is to acquire
(noisy) annotations of similar/dissimilar pairs of items.
Here, for each user u, we collect and sort the items
{x1,x2, . . . ,xq} that u has interacted with in the in-
creasing order of time. For an randomly sampled item
xi ∼ {x1,x2, . . . ,xq}, we will sample (independently) h
items {x+

1 ,x
+
2 , . . . ,x

+
h } within a forward κ-step window

{xi+1,xi+2, . . . ,xi+κ}. This forms h positive (similar)
pairs {(xi,x+

ι )}hι=1 per user. We also sample randomly
(over the item catalogue) another h items {x−1 , . . . ,x

−
h }

to form another h negative pairs {(xi,x−ι )}hι=1.

Training Siamese Net Baseline. This results in a
dataset {(xa,xb, yab)} where yab = 0 indicates (xa,xb)
is a pair of similar items and otherwise for yab = 1
(see Section 2.1). Here, the items xa and xb are rep-

resented as lists of meta vectors (one per channel),
xa = [v1

a, . . . ,v
p
a] and xb = [v1

b , . . . ,v
p
b ], respectively.

This dataset will then be used to train a Siamese ensem-
ble (see Section 3.2) which learns a separate individual
Siamese distance Di(v

i
a,v

i
b) per meta channel, and

combines them via Eq. (6). Di(v
i
a,v

i
b) is computed

via Eq. (5) which is expressed in the abstract form of
a feature embedding tower Fv and a scale matrix Λ.
Both of which are detailed next in Appendix A.2.

Item Test Set. The above annotation is restricted to
items that appears before a certain time T. An item
is considered to appear before T if the earliest time
it was interacted with by a user is before T. In our
experiment, T is selected such that the no. of test item
is about 5% of the item catalogue.

A.2 Model Parameterization

This section elaborates further on the Siamese ensemble
architecture that we mention in the main text. First,
this refers to Eq. (6) which breaks down the overall
item metric into individual metric across multiple meta
channels. Second, each individual metric is character-
ized in Eq. (2) which concerns a feature embedding
tower F(x;γ) that maps the meta data vector of a
single channel5 into a metric space equipped with a
Mahalonobis distance parameterized by a diagonal scale
matrix Λ. Here, we set Λ = I seeing that its values
on the diagonal can be absorbed into the parameteri-
zation γ of F(x;γ), which is parameterized separately
for each channel, as detailed below.

For each channel m of meta data, the corresponding
feature embedding tower Fm(x;γ) is a feed-forward net
comprising 3 dense layers with 2× h, h and h hidden
units where h = 50 in our experiments. The layers are
activated by a ReLu (RL), sigmoid and tanh functions
in that order. That is, Fm(metam(x);γm) ,

tanh

(
Wm

t σ
(
Wm

s RL
(
Wm

o vec(x)+bmo

)
+bms

)
+ bmt

)
where Wm

o ∈ R2h×d, Wm
s ∈ Rh×2h and Wm

t ∈ Rh×h

5Here, we abuse the notation x to represent a single-
channel meta vector whereas previously, x was also used to
denote a list of such single-channel meta vectors. Nonethe-
less, we believe this notation abuse does not impact the
readability of the section since the context is clear.
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are learnable affine transformation weights. Like-
wise, bmo ∈ R2h, bms ∈ Rh and bmt ∈ Rh are learn-
able bias vectors. Here, the vec or Flatten opera-
tor reshapes the input tensor x into a column vec-
tor of d dimensions. The other tanh, sigmoid and
ReLu are applied point-wise to components of their
input vectors or matrices. Thus, in short, we have
γm = {(Wm

t ,b
m
t ), (W

m
s ,b

m
s ), (W

m
o ,b

m
o )} as learn-

able parameters for Fm.

Furthermore, in addition to the above parametric em-
bedding of each meta channel, we also have a non-
parametric embedding tower that maps from each item
ID (i.e., an integer scalar) to a unique continuous p-
dimensional vector. This ID embedding tower is non-
parametric since its number of parameters is propor-
tional to the number of items in the catalogue,

FID

(
ID
(
x
)
;γID

)
,Flatten

(
Embedding

(
ID(x);γ

))
Here, γID comprises p × n learnable scalars where n
is the total number of items. The Flatten operator
again reshapes the output into a p-dimension column
vector. In our experiment, p = 30. For more detail, our
experimental code is also included in the supplement.

B Proof of Lemma 1

Lemma 1. Assuming κiu(w) is twice-differentiable at
w = 0, the approximation of κiu(w) with its 2nd-order
Taylor expansion around w = 0 induces the following,

∇wL(w+)=
1

q

q∑
u=1

([
Dwκu(w+)

]
∇w`u(κu(w+))

)
(18)

with Dwκu(w+) ,
[
∇>wκ1u(w+); . . . ;∇>wκp+1

u (w+)
]

whose rows are approximated via

∇wκ
i
u

(
w+

)
' ∇wκ

i
u

(
0
)
+
[
∇2

wκ
i
u

(
0
)]

w+ . (19)

Proof. First, it is straight-forward to see that Eq. (18)
above can be derived by taking derivative on both sides
of Eq. (9) and the RHS of Eq. (18) concerning the
Jacobian Dwκu(w+)) is simply the result of the chain
rule of differentiation.

Thus, what remains to be proved is how one arrive at
Eq. (19) assuming the 2nd-order Taylor expansion of
κiu(w) exists around w = 0 and can be used as a rea-
sonable approximation. To see this, let us express the
2nd-order Taylor of κiu(w) around 0 explicitly below:

κiu

(
w
)
' κiu

(
0
)

+ w>
[
∇wκ

i
u

(
0
)]

+
1

2
w>

[
∇2

wκ
i
u

(
0
)]

w . (20)

Taking derivative with respect to w on both sides of
Eq. (21) and evaluating both at w = w+ yield,

∇wκ
i
u

(
w
)
' ∇wκ

i
u

(
0
)
+
[
∇2

wκ
i
u

(
0
)]

w+ , (21)

which is the desired approximation above.

C Proof of Lemma 2

Lemma 2. Suppose (1 − ε)·k∗(x,x′) ≤ k(x,x′) ≤
(1 + ε) · k∗(x,x′) for ε ∈ (0, 1) then∣∣∣D(x,x′)−D∗(x,x

′)
∣∣∣ ≤ 2 log

(
1

1− ε

)
. (22)

Proof. From the above premises, we have

1 + ε ≥ k(x,x′)/k∗(x,x
′)

= exp

(
1

2
·
(
D∗(x,x

′)−D(x,x′)
))

(23)

which immediately implies D∗(x,x
′) − D(x,x′) ≤

2 log(1 + ε). Likewise, repeating the same exercise
for k(x,x′)/k∗(x,x′) ≥ 1 − ε implies D∗(x,x

′) −
D(x,x′) ≥ −2 log(1/(1 − ε)). Thus, combining the
above, it follows that∣∣∣∣∣D(x,x′)−D∗(x,x

′)

∣∣∣∣∣ ≤ 2 log

(
1

1− ε

)
(24)

which holds because for ε ∈ (0, 1), we have 1/(1 − ε) ≥
1 + ε.

D Proof of Lemma 3

Lemma 3 Suppose sup
(x,x′)

∣∣∣∣k(x,x′)− k∗(x,x′)k∗(x,x′)

∣∣∣∣ ≤ ε

for ε ∈ (0, 1) then

∀(x,x′) :
∣∣∣D(x,x′)−D∗(x,x

′)
∣∣∣ ≤ 2 log

(
1

1− ε

)
(25)

Proof. sup
(x,x′)

∣∣∣∣k(x,x′)− k∗(x,x′)k∗(x,x′)

∣∣∣∣ ≤ ε implies

∀(x,x′) : k∗ (x,x′) (1 − ε) ≤ k (x,x′)

≤ k∗ (x,x
′) (1 + ε) (26)

Thus, by Lemma 2, Eq. (26) subsequently implies:

∀(x,x′) :
∣∣∣D(x,x′)−D∗(x,x

′)
∣∣∣ ≤ 2 log

(
1

1− ε

)
(27)
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E Proof of Theorem 1

To prove Theorem 1, we need to first establish the
following auxiliary results:

Lemma 4. Let r ∼ N(0,K∗) and A denote a positive
semi-definite and symmetric matrix. We have:

∀λ > 0 : E
[
exp

(
λr>Ar

)]
= |I− 2λAK∗|−

1
2 (28)

where the expectation is over the distribution of r.

Proof. Note that for any r ∼ N(0,B) where B is a
symmetric, positive semi-definite matrix,

p(r) = (2π)
−n2 |B|−

1
2 exp

(
−1

2
r>B−1r

)
. (29)

This also implies∫
r

exp

(
−1

2
r>B−1r

)
dr = (2π)

n
2 |B|

1
2 (30)

since p(r) must integrate to one. On the other hand,
we can expand E

[
exp

(
λr>Ar

)]
=(2π)

−n2 |K∗|−
1
2

∫
r

exp
(
λr>Ar

)
exp

(
−1

2
r>K−1∗ r

)
dr

=(2π)
−n2 |K∗|−

1
2

∫
r

exp

(
−1

2
r>
(
K−1∗ − 2λA

)
r

)
dr

=(2π)
−n2 |K∗|−

1
2 (2π)

n
2 |B|

1
2 = |K∗|−

1
2 |B|

1
2 (31)

where B = (K−1∗ − 2λA)−1 and the second last step
above follows from Eq. (30). Furthermore, since B =
(K−1∗ − 2λA)−1 = ((I − 2λAK∗)K

−1
∗ )−1 = K(I −

2λAK∗)
−1, it follows that |B| = |K∗||I − 2λAK∗|−1.

Plugging this into Eq. (31) yields

E
[
exp

(
λr>Ar

)]
= |K∗|−

1
2 |B|

1
2

= |K∗|−
1
2 |K∗|

1
2 |I− 2λAK∗|−

1
2

= |I− 2λAK∗|−
1
2 . (32)

As the above is true for all λ > 0, our proof is completed.

Lemma 5. Let r ∼ N(0,K∗) where r =
[r(x1), r(x2), . . . , r(xn)]. Suppose we use r as observa-
tions of a surrogate feedback to fit our self-supervised
GP model in Section 3.1 and let r̂ denote the prediction
made by the fitted GP at the same set of training inputs
{x1,x2, . . . ,xn}, we have

(r− r̂)
>
A (r− r̂) = σ4r>

(
K + σ2I

)−1
A
(
K + σ2I

)−1
r

(33)

where A is a square matrix and σ2 is the variance of
the GP likelihood as defined in Eq. (3).

Proof. Applying Eq. (3) on x∗ = x1,x2, . . . ,xn and
y = r and collecting the results in a column vector r̂
straight-forwardly yields

r̂ = K
(
K + σ2I

)−1
r , (34)

which further implies

r− r̂ = r−K
(
K + σ2I

)−1
r (35)

= r−K
(
K + σ2I

)−1
r− σ2I

(
K + σ2I

)−1
r

+ σ2I
(
K + σ2I

)−1
r (36)

= r−
(
K + σ2I

) (
K + σ2I

)−1
r

+ σ2
(
K + σ2I

)−1
r (37)

= r− r + σ2
(
K + σ2I

)−1
r

= σ2
(
K + σ2I

)−1
r . (38)

Finally, plugging Eq. (38) into the expression of
(r− r̂)

>
A (r− r̂) produces the desired result.

Given the above results in Lemma 4 and Lemma 5, we
are now ready to (re-)state and prove the key result in
Theorem 1 below.

Theorem 1 Let g(τ) , log(τ) + (1/τ) − 1 and cε ,

ελmax

(
K∗

)
/d, we have

Pr

(
sup
(x,x′)

∣∣∣∣k(x,x′)− k∗(x,x′)k∗(x,x′)

∣∣∣∣ ≥ ε

)

≤ exp

(
−1

2
n · g

(
σ4

α

(
1− cε

)
λmax

(
K∗

)))
(39)

where d and α are defined in A1 and A2 above.

Proof. To prove the above result, note that

Pr

(
sup
(x,x′)

∣∣∣∣k(x,x′)− k∗(x,x′)k∗(x,x′)

∣∣∣∣ ≥ ε

)

= Pr

(∣∣∣k(xa,xb)− k∗(xa,xb)∣∣∣ ≥ ε · k∗(xa,xb)

)
(40)

where (xa,xb) is any pair of inputs for which the cor-
responding multiplicative approximation error meets
the defined supremum value. Thus, let E be the event
that

∣∣∣k(xa,xb) − k∗(xa,xb)
∣∣∣ ≥ ε · k∗(xa,xb). By
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assumptions A1 and A2, we have Pr(E)

≤ Pr

(
sup
(x,x′)

∣∣∣k(x,x′)− k∗(x,x′)∣∣∣ ≥ ε · k∗(xa,xb)

)

≤ Pr

(
sup
(x,x′)

∣∣∣k(x,x′)− k∗(x,x′)∣∣∣ ≥ ε · λmax (K∗)

d

)

≤ Pr

(
(r− r̂)>A(r− r̂)− α
(r− r̂)>A(r− r̂)

≥ cε

)

= Pr

(
(1− cε)(r− r̂)>A(r− r̂) ≥ α

)
(41)

with cε = ε · λmax(K∗)/d and A = (1/n)(K + σ2I)2 as
defined in A2. Here, the second and third inequalities
in the above follow from A1 and A2, respectively.
Next, applying Lemma 5 to the RHS of Eq. (41) with
A = (1/n)(K + σ2I)2, it follows that ∀λ > 0:

Pr
(
E
)
≤ Pr

(
(1− cε)(r− r̂)>A(r− r̂) ≥ α

)

= Pr

(
σ4

n
(1− cε)r>r ≥ α

)

= Pr

(
exp

(
λ · σ

4

n
(1− cε)r>r

)
≥ exp (λ · α)

)

≤ E
[
exp

(
λ · σ

4

n
(1− cε)r>r

)]
exp (−λ · α)

=

∣∣∣∣I− 2λ · σ
4

n
(1− cε)K∗

∣∣∣∣− 1
2

exp (−λ · α)

= exp

(
−1

2
log

∣∣∣∣I− 2λ · σ
4

n
(1− cε)K∗

∣∣∣∣−λ · α)
= exp (F(λ)) (42)

where F(λ) = − 1
2 log

∣∣∣I− 2λ · σ
4

n (1− cε)K∗
∣∣∣ − λ · α.

Here, the second step above follows from Lemma 5.
The fourth step follows from the Markov inequality
and the fifth step results from applying Lemma 4 when
we replace λ (in Lemma 4) by λ · σ

4

n (1− cε) and A = I.

Furthermore, we also note that Eq. (42) holds for all
λ > 0, we can tighten the bound on the RHS by solv-
ing for λ that minimizes F(λ). To do this, we set
dF(λ)/dλ = 0 and solve for λ which results in

λ =
n

2
· 1

σ4
· 1

1− cε
· 1

λmax(K∗)

×
(
1− σ4

α
· (1− cε) · λmax(K∗)

)
(43)

Thus, plugging this optimal value of λ into the RHS of
Eq. (42) yields

Pr
(
E
)
≤ exp

(
−n
2
· g
(
σ4

α
(1− cε)λmax

(
K∗

)))
(44)

where g(τ) = log(τ) + (1/τ) − 1. From Eq. (40) and
the definition of E, we have

Pr

(
sup

∣∣∣∣k(x,x′)− k∗(x,x′)k∗(x,x′)

∣∣∣∣ ≥ ε) = Pr
(
E
)

(45)

Then, combining this with Eq. (44) above yields the
desired result.

F Proof of Theorem 2

Theorem 2 Let g(τ) = log(τ) + (1/τ) − 1 and gε =

g

(
σ4

α

(
1− λmax

(
K∗

) ε
d

)
λmax

(
K∗

))
. Then,

Pr

(
sup
(x,x′)

∣∣∣D(x,x′)−D∗(x,x
′)
∣∣∣ ≤ 2 log

(
1

1− ε

))
≥ 1− δ (46)

when n ≥ 2

gε
log

1

δ
and δ ∈ (0, 1) is an arbitrarily small

confidence parameter.

Proof. Setting exp
(
−n2 · g

(
σ4

α (1− cε)λmax

(
K∗

)))
≤

δ implies

Pr

(
sup
(x,x′)

∣∣∣∣k(x,x′)− k∗(x,x′)k∗(x,x′)

∣∣∣∣ ≥ ε

)
≤ δ (47)

via Theorem 1 or equivalently,

Pr

(
sup
(x,x′)

∣∣∣∣k(x,x′)− k∗(x,x′)k∗(x,x′)

∣∣∣∣ ≤ ε

)
≥ 1− δ (48)

That is, with probability at least 1− δ,

sup
(x,x′)

∣∣∣∣k(x,x′)− k∗(x,x′)k∗(x,x′)

∣∣∣∣ ≤ ε (49)

which in turn implies

sup
(x,x′)

∣∣∣D(x,x′)−D∗(x,x
′)
∣∣∣ ≤ 2 log

(
1

1− ε

)
(50)

via Lemma 3. This also means

Pr

(
sup
(x,x′)

∣∣∣D(x,x′)−D∗(x,x
′)
∣∣∣ ≤ 2 log

(
1

1− ε

))
≥ 1− δ . (51)

As this happens when

exp

(
−n
2
· g
(
σ4

α
(1− cε)λmax

(
K∗

)))
≤ δ , (52)

we have

log
1

δ
≤ n

2
· g
(
σ4

α
(1− cε)λmax

(
K∗

))
=
n

2
· gε (53)

which implies nmust be at least
2

gε
log

1

δ
as desired.
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G Sparse Gaussian Processes

To improve the scalability of GP model, numerous
sparse GP methods [13, 14, 17, 18, 23, 32, 40, 42, 46]
have been proposed to reduce its cubic processing cost
to linear in the size of data. One common recipe that is
broadly adopted by these works is the exploitation of a
low-rank approximate representation of the covariance
(or Gram) matrix in characterizing the GP prior.

The work of [31] has in fact presented a unifying
view of such methods, which share a similar struc-
tural assumption of conditional independence (albeit
of varying degrees) based on a notion of inducing vari-
ables [35, 37, 38, 39, 41]. In particular, under this
assumption, there exists a subset of supporting inputs
S = {x1,x2, . . . ,xm} such that conditioning on their
(latent) outputs g+ = [g(x1)) . . . g(xm)]

>, the input
space can be partitioned into regions such that if x and
x′ belong to two different regions, then g(x) and g(x′)
are statistically independent.

Depending on the specific form the assumed con-
ditional independence, which entails how the input
space is partitioned and is different across differ-
ent methods, the exact covariance matrix K can be
shown to be equivalent to either Q [37, 38], Q −
diag[Q − K] [39] or Q − blkdiag[Q − K] [35, 40]
(among others). Here, common to all these approx-
imations is the low-rank matrix Q whose entries Qab ,
k>a K−1++kb where ka , [k(xa,x1) . . . k(xa,xm)]>, kb ,
[k(xb,x1) . . . k(xb,xm)]

> and K++ is the Gram ma-
trix induced by the kernel function k(x,x′) on S =
{x1,x2, . . . ,xm}.

By its construction, it is straight-forward to see that
rank(Q) ≤ m and as such, plugging Q into one of
the above approximations of K and replacing K in
Eq. (4) with the approximation would result in an
expression that is computable in O(nm2) – via the
Woodburry matrix inversion identity – which is linear
in n. For interested readers, the exact derivation of
these approximations can be found in [31]. In our self-
supervised metric learning experiment (Section 3.1),
we adopt the simplest approximation with Q which is
sufficient to scale with datasets spanning tens or even
hundreds of thousands of items.

Remark. The approximation with Q [38] is later redis-
covered as the result performing variational inference
to approximate the tractable (but otherwise costly)
GP prediction [42]. This results in an alternative vari-
ational perspective that unifies a broader spectrum
(including the above) of sparse GPs. Under this new
view, the above approximations can be reproduced as
the exact result of performing variational inference on
a GP with modified prior [15] or noise covariance [16].
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