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ABSTRACT
We propose a new approach to estimate causal effects from ob-

servational data. We leverage multiple data sources which share

similar causal mechanisms with the scarce target observations to

help infer causal effects in the target domain. The data sources may

be available in sequence or some unplanned order. Causal inference

can be carried out without prior knowledge of the data discrepancy

between the source and target observations. We introduce three

levels of knowledge transfer through modelling the outcomes, treat-

ments, and confounders to achieve consistent positive transfer. We

incorporate parametric transfer factors to adaptively control the

transfer strength, thus achieving a fair and balanced knowledge

transfer between the sources and the target. We also empirically

show the effectiveness of the proposed method as compared with

recent baselines.
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methods.

KEYWORDS
causal inference, heterogeneous treatment effect, transfer learning,

representer theorem

ACM Reference Format:
Thanh Vinh Vo, Pengfei Wei, Trong Nghia Hoang, and Tze-Yun Leong.

2022. Adaptive Multi-Source Causal Inference from Observational Data. In

Proceedings of the 31st ACM Int’l Conference on Information and Knowledge
Management (CIKM ’22), Oct. 17–21, 2022, Atlanta, GA, USA. ACM, New

York, NY, USA, 11 pages. https://doi.org/10.1145/3511808.3557230

1 INTRODUCTION
Causal inference for estimating treatment effects of an intervention

on a particular outcome commonly arises in many practical areas,

e.g., personalized medicine [16, 37], digital experiments [48] and

political science [13]. This process is complicated by the presence of

latent confounders that affect both the treatment and the outcome
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[24, 26, 38], e.g., a patient’s socioeconomic status, which cannot

be directly observed, affects both affordable therapy options (the

treatment) and the health conditions (the outcome) of this patient.

Treatment effects with latent confounders are usually estimated

using a set of proxy variables with sufficient data observations,

e.g., using income, residential address, etc., as proxies for socio-

economic status. However, the observational data of a population

may be scarce in practice, possibly due to difficulty in collection or

expensive annotation, leading to poor estimates of the treatment

effects in that population. This problem is exacerbated in cases

with heterogeneous treatment effects, which means that the same
treatment may affect different individuals or populations differently
[14, 18].

Fortunately, observations from experiments of the same treat-

ment on different populations are likely to share similar causal

mechanisms, e.g., causal graphs and structural causal equations.

Directly combining the data from the source and target populations,

however, might give a better global causal estimand, but not the

heterogeneous treatment effects. How to adaptively transfer useful

knowledge from the source to the target is a challenging problem.

For example, suppose we have sufficient observational data in

a region 𝐴 to estimate the treatment effects of a new medicine

(the treatment) on blood pressure (the outcome) of patients in that

region. We wish to utilize the data of (source) region 𝐴 to help

infer causal effects in another (target) region 𝐵 whose data is scarce.

However, the average population age in region 𝐴 may be different

from that in region𝐵. The distribution of blood pressure for different

age groups may also be different [41], i.e., the distribution of the

outcomes in 𝐴 and 𝐵 are different. If we naively combine the two

datasets, the population with more data (𝐴) might dominate the

one with less (𝐵), leading to a biased causal effect estimation for

region 𝐵, especially for heterogeneous treatment effects. In such

cases, matching methods such as covariate or propensity score

matching may result in a very small dataset, which might reduce

the accuracy of the estimated heterogeneous treatment effects in the

target population. Furthermore, the feature “age” might not even

be available in the datasets, which could further bias the estimation.

Other problematic situations include those where the distributions

of the other features or covariates in the system are also different.

We further illustrate this bias through an example in Appendix A.

In this work, we examine how to improve treatment effect es-

timation on a target population by exploiting useful information

from some different but related data sources, taking into account

the potential distribution dissimilarities between the source and

target populations. Our contributions are summarized as follows:
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Figure 1: (a) The causal graph of population d, where d can
be either a source population or the target population, i.e.,
d ∈ {t} ∪ S, where S = {s1, s2,..., s𝑚} denotes the set of 𝑚
sources.𝑤d, 𝑦d, xd, and zd are the treatment, outcome, proxy
variable, and latent confounder, respectively. Further details
of these variables are explained in Section 3.2. (b) The three
levels of knowledge transfer in our learning algorithm. The
dashed lines indicate where the transfer learning happens in
the inference, and they do not indicate causal relationships.

• We introduce the AdaTRANS
1
(adaptive transfer) causal effect

estimator that can adaptively exploit observations from multi-

ple source populations to help infer the heterogeneous treatment
effects in a target population with scarce data.

• AdaTRANS can infer causal effects in the target population by

utilizing multiple data sources without prior knowledge of data

discrepancy between the source and target populations. Ada-

TRANS can learn the discrepancy between the target population

and each of the source populations, and then transfer useful

knowledge from the source populations to the target population,

overcoming the distribution dissimilarity problem.

• We develop three levels of knowledge transfer in the inference

of the outcome, treatment, and confounders. These three levels

of knowledge transfer are controlled by three sets of similarity

coefficients learned from the observed sources and target data.

Specifically, we focus on a causal graph as shown in Figure 1(a).

Figure 1(b) is an illustration with one source population that

helps to estimate causal effects in the target population. The

three similarity coefficients 𝜆 (t,s) , 𝜈 (t,s) , 𝛿 (t,s) are learned from

the observed data.

• To learn themodel, we propose an augmented representer theorem-

based variational inference procedure to approximate the posteri-

ors of the confounding factors, which leads to efficient estimation

of the treatment effects.

• AdaTRANS is empirically shown to outperform the baselines on

data with dissimilar distributions between the sources and the

target.

2 RELATEDWORK
Causal inference without transfer. A confounder in causal infer-

ence may induce bias in the estimates of treatment effects. Classical

methods that deal with confounders such as covariate matching,

propensity score matching, Bayesian imputations for missing data

[43–45] are based on the ignorability assumption in the potential out-
comes framework to estimate the causal effects from observational

data. Modern causal effect estimators for heterogeneous treatment

effects including [2, 10, 15, 17, 21, 30–32, 46, 47, 51, 53, 54, 56] are

also based on the ignorability assumption in the potential outcomes

framework with observed confounders. The central idea is to build

1
Source code: https://github.com/vothanhvinh/AdaTRANS

a modern regression model to predict the counterfactual outcomes,

and then use them to compute the treatment effects of interest, e.g.,

individual treatment effect (also known as conditional average treat-

ment effect). Veitch et al. [50] proposed a propensity score matching

with random mini-batch data. Some other efforts take into account

the unobserved confounders in causal inference: [9, 19, 22, 24–

26, 29, 40, 52]. Specifically, some proxy variables are introduced to

infer the latent confounders. These methods focus only on causal

inference in single population, while our work considers transfer
learning from multiple data sources to estimate causal effects in a

target population.

Causal inference with transfer. A line of closely related work:

Bareinboim et al. [5], Bareinboim and Pearl [6, 7, 8], Lee et al.

[23], Pearl and Bareinboim [36] formalizes the notion of transporta-
bility of interventions on the source populations to compute causal

effects in the target population. The source population can obtain

interventional data by conducting randomized trials while only

observational data are available in the target population. Aglietti

et al. [1], for example, built a joint model based on interventional

source data and observational target data. Transportability allows

us to use observational data (instead of randomized trials) of the

source population to transport to the target population if we can

use the 𝑑𝑜-calculus of Pearl [34] to reduce interventional distribu-

tions on the source populations to an expression containing only

conditional distributions.

We focus on estimating heterogenous treatment effects with

latent confounders from only observational data on both the source

and target populations, i.e., no randomised experiments are con-

ducted to collect the data. Our method incorporates the idea of

transfer learning to learn the discrepancy (or similarity) of each

source population and the target population, and then estimates

treatment effects in the target population. This is also different from

existing work that utilizes tools in causality to improve transfer

learning algorithms [e.g., 27, 39, 42, 49, 55].

3 THE PROPOSED METHOD
This section develops a novel causal inference framework that is

capable of adaptively exploiting additional data sources to help

estimate treatment effects in a target population. Based on the

structural causal model (SCM) [35], the aim of our approach is to

use additional but related data sources for more accurate inference.

We assume that the source observations are related with target ones

in the sense that they have the identical causal graph (Figure 1) and

structural causal equations (presented in Section 3.2). However, the

data distributionsmay differ considerably across populations, which

renders the failure of the straightforward data fusion
2
. To achieve

the positive and adaptive knowledge transfer, instead of modelling

those probabilities for each population separately, we propose an

augmented-representer theorem with a similarity measurement

controlling knowledge transfer strength from the sources to the

target population.

Specifically, we develop three levels of knowledge transfer, which

take place in learning distributions of the outcome, treatment and

confounder. For each level of knowledge transfer, we assign a set

2
As shown in [33], a brute-force data fusion of different populations may result in

negative knowledge transfer.
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of learnable coefficients to model similarity of the corresponding

data observations between each pair of populations, and hence

adaptively transfer knowledge from multiple source populations

to the target population for estimating causal effects of the target

population.

3.1 Problem Description
In this work, we focus on one target population t and 𝑚 source

populations s1, s2,..., s𝑚 . We denote the set of all source populations

as S = {s𝑖 }𝑚𝑖=1. For each population d ∈ {t} ∪ S, we assume

that a finite collection of training data tuples {(𝑦d
𝑖
,𝑤d

𝑖
, xd

𝑖
)}𝑛d

𝑖=1
is

provided. Here, 𝑤d
𝑖
, 𝑦d

𝑖
and xd

𝑖
denote the observed data of the

treatment, the outcome and the proxy variable of individual 𝑖 in the

population d, respectively. The source and target populations share
the same causal graph as shown in Figure 1(a), but may be different

in their structural equations. Hence, their data distributions may be

different, e.g., 𝑝s (xd𝑖 ,𝑤
d
𝑖
, 𝑦d

𝑖
) ≠ 𝑝t (xd𝑖 ,𝑤

d
𝑖
, 𝑦d

𝑖
), where 𝑝s (·) and 𝑝t (·)

denote the distributions of a source s and the target t, respectively.
As a result, their causal effects might also be different. Moreover, the

target population has scarce training observations while the source

populations have sufficient training observations, 𝑛t ≪
∑
s∈S 𝑛s.

The objective is to estimate causal effects on a set of individuals of

the target population t by utilizing the training observations from

t and all source populations s ∈ S. In particular, we first train a

model that utilizes training data from the source populations and

the target population. Then, we use this learned model to estimate

individual treatment effect (ITE) and average treatment effect (ATE)

in a set of new individuals of the target population whose observed

proxy variables are {xt∗𝑖 }
𝑛∗
𝑖=1

, where 𝑛∗ is the size of this set. These
quantities are defined as follows.

Definition 1. Let 𝑌 ,𝑊 , 𝑋 be random variables of the outcome,
treatment, and proxy variable, respectively. Then, the ITE and ATE

are defined as follows

ite(𝑥) := 𝐸
[
𝑌 |do(𝑊=1), 𝑋=𝑥

]
− 𝐸

[
𝑌 |do(𝑊=0), 𝑋=𝑥

]
,

ate := 𝐸 [ite(𝑋 )],

where do(𝑊=𝑤) represents that a treatment 𝑤 ∈ {0, 1} is given to
the individual.

The ITE defined here is also known as the conditional average

treatment effect (CATE) [24, 26]. From Definition 1, the ITE and

ATE in the above set of individuals of the target population are

obtained by ite(xt∗𝑖 ) and ate =
∑𝑛∗
𝑖=1

ite(xt∗𝑖 )/𝑛∗, respectively.

3.2 The Structural Causal Equations
To estimate treatment effects, we first specify the structural equa-

tions associated with the causal graph in Figure 1(a). For each

d∈ {t} ∪ S, we assume the following components.

The latent confounder zd
𝑖
. In real world applications, it is not pos-

sible to capture all the potential confounders as some of themmight

not be observed due to lack of measurement methods or unknown

confounders. With the existence of latent confounders, causal in-

ference can lead to a biased estimation. The increasing availability

of large and rich datasets enables unobserved confounders to be

inferred from other observed variables which are known as the

proxy variables. We assume the structural equation of zd
𝑖
as follows

zd𝑖 = µ + 𝒆d𝑖 , (1)

where 𝒆d
𝑖
∼ N(0, 𝜎2𝑧 I) is the noise and µ is the mean vector of 𝑑𝑧

dimensions.

The outcome𝑦d
𝑖
. In practice, the outcome can take different values,

such as a binary value or a real number, depending on the the nature

of data and the application. We model two cases of the outcome by

the following structural equations:

Continuous outcome: 𝑦d𝑖 = 𝑓𝑦

(
𝑤d
𝑖 , z

d
𝑖

)
+ 𝑜d𝑖 , (2)

Binary outcome: 𝑦d𝑖 = 1
(
𝑜d𝑖 ≤ 𝜑

(
𝑓𝑦

(
𝑤d
𝑖 , z

d
𝑖

)))
. (3)

In case of continuous outcomes, 𝑜d
𝑖
∼ N(0, 𝜎2𝑦), where 𝜎2𝑦 is the

variance. In case of binary outcomes, 𝑜d
𝑖
∼ U[0, 1], where 𝜑 (·)

is the logistic function and 1(·) is the indicator function. In this

case, Eq. (3) implies that 𝑦d
𝑖
(given 𝑤d

𝑖
and zd

𝑖
) follows Bernoulli

distributionwhere𝜑

(
𝑓𝑦

(
𝑤d
𝑖
, zd
𝑖

))
denotes the probability that𝑦d

𝑖
=

1. For both cases, the function 𝑓𝑦 (·) is modelled in the following

form: 𝑓𝑦 (𝑤d
𝑖
, zd
𝑖
) = 𝑤d

𝑖
𝑓𝑦1 (zd𝑖 ) + (1 −𝑤

d
𝑖
) 𝑓𝑦0 (zd𝑖 ), where 𝑓𝑦1 : Z ↦→

F𝑦1 and 𝑓 d𝑦0 : Z ↦→ F𝑦0 are functions modelling the outcome when

𝑤d
𝑖
= 1 and 𝑤d

𝑖
= 0, respectively. Z is the set containing zd

𝑖
. F𝑦1

and F𝑦0 are Hilbert spaces.
The treatment 𝑤d

𝑖
and the proxy variable xd

𝑖
. Similar to the

outcome, we specify

𝑤d
𝑖 = 1

(
𝑢d𝑖 ≤ 𝜑

(
𝑓𝑤 (zd𝑖 )

))
, (4)

𝑥d
𝑖𝑘

= 𝑓𝑥 (zd𝑖 )𝑘 + 𝑟
d
𝑖𝑘

for continuous 𝑥d
𝑖𝑘
, (5)

𝑥d
𝑖𝑘

= 1
(
𝑟d
𝑖𝑘
≤ 𝜑 (𝑓𝑥 (zd𝑖 )𝑘 )

)
for binary 𝑥d

𝑖𝑘
, (6)

where 𝑓𝑤 : Z ↦→ F𝑤 and 𝑓𝑥 : Z ↦→ F𝑥 are functions, F𝑤 and F𝑥 are

Hilbert spaces. In Eq. (5) and (6), 𝑓𝑥 (zd𝑖 )𝑘 denotes the𝑘-th dimension

of 𝑓𝑥 (zd𝑖 ), 𝑟
d
𝑖𝑘
∼ N(0, (𝜎d

𝑥𝑘
)2) for continuous 𝑥d

𝑖𝑘
and 𝑟d

𝑖𝑘
∼ U[0, 1]

for binary 𝑥d
𝑖𝑘
. Finally, 𝑢d

𝑖
∼ U[0, 1] in Eq. (4).

In the subsequent section, we develop an augmented-representer

theorem algorithm to learn the functions 𝑓𝑐 (where 𝑐 ∈ {𝑦0, 𝑦1, 𝑥,𝑤})
such that it can adaptively transfer knowledge from the sources to

the target population. We then estimate causal effects in the target

population based on these learned functions.

3.3 Estimating Treatment Effects
Definition 1 implies that the central task to estimate ITE and ATE

in the target population is to find 𝑝 (𝑦t
𝑖
|do(𝑤 t

𝑖
), xt

𝑖
). With existence

of the latent confounder zt
𝑖
, we can further expand this quantity

using the backdoor adjustment formula [34] as follows

𝑝 (𝑦t𝑖 |do(𝑤
t
𝑖 ), x

t
𝑖 ) =

∫
𝑝 (𝑦t𝑖 |𝑤

t
𝑖 , z

t
𝑖 )𝑝 (z

t
𝑖 |x

t
𝑖 )𝑑z

t
𝑖 . (7)

The above equation shows that the causal effect is identifiable if

we can find the conditional distributions 𝑝 (𝑦t
𝑖
|𝑤 t

𝑖
, zt
𝑖
) and 𝑝 (zt

𝑖
|xt
𝑖
).

The second distribution can be further expanded by 𝑝 (zt
𝑖
|xt
𝑖
) =∑

𝑤t
𝑖

∫
𝑝 (z|xt

𝑖
, 𝑦t

𝑖
,𝑤 t

𝑖
)𝑝 (𝑦t

𝑖
|xt
𝑖
,𝑤 t

𝑖
)𝑝 (𝑤 t

𝑖
|xt
𝑖
)d𝑦t

𝑖
. Following the forward

1977
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sampling strategy, the remaining task is to find the following dis-

tributions

𝑝 (𝑤 t
𝑖 |x

t
𝑖 ), 𝑝 (𝑦t𝑖 |x

t
𝑖 ,𝑤

t
𝑖 ), 𝑝 (zt𝑖 |x

t
𝑖 , 𝑦

t
𝑖 ,𝑤

t
𝑖 ), 𝑝 (𝑦t𝑖 |𝑤

t
𝑖 , z

t
𝑖 ), (8)

and then orderly draw samples from these estimated distributions

to obtain the empirical expectation of 𝑦t
𝑖
given do(𝑤 t

𝑖
) and xt

𝑖
. Due

to the data scarcity issue in the target population t, the estimations

using target observations only may not be accurate enough to

recover the true treatment effects, especially ITE. To overcome

this issue, we take into account additional data observations from

all the sources s ∈ S. Consequently, we learn the distributions

in Eq. (8) using training data of the target population and all the

source populations. In the subsequent sections, we present how to

adaptively approximate these distributions.

Identification. The causal effects are unidentifiable when the con-

founders are unobserved. These, however, are identifiable if we

can learn the confounders from the proxy variable. Louizos et al.

[24] (Theorem 1) suggested that if we can learn the joint distri-

bution 𝑝 (zt, xt, 𝑦t,𝑤 t), then the causal effects are identifiable. In

this case, one can use variational auto-encoder (VAE) to recover

the latent confounders. This is because a VAE can learn a rich

class of latent-variable models [24, 26]. Identification of our work

closely follows from Louizos et al. [24]. We developed an adaptive
variational inference algorithm that utilizes multiple data sources

to learn the distributions in Eq. (8), and thus the joint distribu-

tion 𝑝 (zt, xt, 𝑦t,𝑤 t) is learned. This results in identifiability of the

proposed model.

3.4 Learning the Proposed Model
In this section, we present our AdaTRANS method to learn the

distributions in Eq. (8) using observational data from the source

populations and the target population. We propose three levels of

knowledge transfer via three sets of learnable similarity coefficients

to learn these distributions. Our method is different from the exist-

ing works in that it models the nonlinear functions using adaptive

transfer kernel function and an augmented-representer theorem. It

requires no prior knowledge on data discrepancy of the source and

the target population, and fewer tuning of the model architecture.

3.4.1 1𝑠𝑡 Level: Learning Distributions Involving Latent Confounders.

We start with learning 𝑝 (zt
𝑖
|xt
𝑖
,𝑤 t

𝑖
, 𝑦t

𝑖
) and 𝑝 (𝑦t

𝑖
|zt
𝑖
,𝑤 t

𝑖
) that in-

clude the latent confounders. Since exact inference is intractable

because of the existence of latent confounders, so we maximize

evidence lower bound (ELBO) of the marginal likelihood:

L :=
∑︁

d∈{t}∪S

{
𝐸zd∼𝑞 (zd | · )

[
log𝑝 (yd |wd, zd) + log 𝑝 (wd |zd)

log 𝑝 (xd |zd)
]
− 𝐷KL

[
𝑞(zd |·)∥𝑝 (zd)

]}
, (9)

where we use bold-face notation yd = [𝑦d
1
,..., 𝑦d𝑛𝑑 ]

⊤
to denote the

vector of all training outcomes in population d, and similarly for the

covariates xd, treatments wd
and latent confounders zd. The ELBO

L is computed with training data from the source populations and

the target population.

The first component in L can be obtained from the structural

equations in Eqs. (2)-(6). In particular, 𝑝 (yd |wd, zd) is from the

structural equation of the outcome in Eq. (2) or (3). 𝑝 (wd |zd) is
from Eq. (4), and 𝑝 (xd |zd) is from Eq. (5) and/or (6).

The notation 𝑞(zd
𝑖
|·) = 𝑞(zd

𝑖
|xd
𝑖
,𝑤d

𝑖
, 𝑦d

𝑖
) denotes the variational

posterior distribution. To be computationally tractable, we use

mean-field approximation, i.e., 𝑞(z|·) =
∏

d
∏

𝑖 𝑞(zd𝑖 |x
d
𝑖
,𝑤d

𝑖
, 𝑦d

𝑖
),

and set the variational posterior to be a normal distribution:

𝑞(z|·) =
∏

d∈{t}∪S

𝑛d∏
𝑖=1

N(zd𝑖 ; 𝑓𝑞 (x
d
𝑖 ,𝑤

d
𝑖 , 𝑦

d
𝑖 ), 𝜎

2

𝑞).

The function 𝑓𝑞 (·) is as follows:

𝑓𝑞 (xd𝑖 ,𝑤
d
𝑖 , 𝑦

d
𝑖 ) = 𝑤d

𝑖 𝑓𝑞1 (𝑥
d
𝑖 , 𝑦

d
𝑖 ) + (1 −𝑤

d
𝑖 ) 𝑓𝑞0 (𝑥

d
𝑖 , 𝑦

d
𝑖 ),

where 𝑓𝑞0 : X × Y ↦→ F𝑞0 and 𝑓𝑞1 : X × Y ↦→ F𝑞1 with X and Y
are the sets containing xd

𝑖
and 𝑦d

𝑖
, respectively, and F𝑞0 , F𝑞1 are

Hilbert spaces. From Eq. (9), optimizing L allows us to learn the dis-

tributions on the target population 𝑝 (𝑦t
𝑖
|zt
𝑖
,𝑤 t

𝑖
) and 𝑞(zt

𝑖
|xt
𝑖
,𝑤 t

𝑖
, 𝑦t

𝑖
)

(which approximates 𝑝 (zt
𝑖
|xt
𝑖
,𝑤 t

𝑖
, 𝑦t

𝑖
)). Learning these distributions

leads to learning the functions 𝑓𝑐 where 𝑐 ∈ {𝑦0, 𝑦1, 𝑞0, 𝑞1, 𝑥,𝑤} and
the hyperparameters.

Adaptive transfer learning. To learn the aforementioned distri-

butions, we first formalize an empirical risk and then optimize its

regularized objective function. To proceed, we first draw 𝐿 samples

of latent confounders using this relation zd
𝑖
[𝑙] = 𝑓𝑞 (xd𝑖 ,𝑤

d
𝑖
, 𝑦d

𝑖
) +

𝜎𝑞ϵ
d
𝑖
[𝑙], where ϵd

𝑖
[𝑙] denotes a vector of 𝑑𝑧 dimensions with each

element drawn from the standard normal distribution. With this

procedure, we form an augmented training dataset as follows

D =
⋃

d∈{t}∪S

𝑛d⋃
𝑖=1

𝐿⋃
𝑙=1

{
(𝑦d𝑖 ,𝑤

d
𝑖 , x

d
𝑖 , z

d
𝑖 [𝑙])

}
.

The augmented training dataset D is the combined data from all

populations d ∈ {t} ∪ S. This dataset is then substituted into the

ELBO L to obtain the Monte-Carlo approximation of L, whose
negative quantity is the empirical risk.

Lemma 1. Let L̂ be the empirical risk obtained from the negative
of the ELBO L. Let τ𝑐 (𝑐 ∈ {𝑦0, 𝑦1, 𝑞0, 𝑞1, 𝑥,𝑤}) be kernel functions
andH𝑐 be their associated reproducing kernel Hilbert spaces (RKHSs).
Consider minimizing

𝐽 = L̂(𝑓𝑦0 , 𝑓𝑦1 , 𝑓𝑞0 , 𝑓𝑞1 , 𝑓𝑥 , 𝑓𝑤) +
∑︁

𝑐
𝛾𝑐 ∥ 𝑓𝑐 ∥2H𝑐

(10)

with respect to 𝑓𝑐 (𝑐 ∈ {𝑦0, 𝑦1, 𝑞0, 𝑞1, 𝑥,𝑤}), where 𝛾𝑐 ∈ R+. The
minimizer of 𝐽 leads to

𝑓𝑐 (ν𝑖 ) =
∑︁

𝑗
τ𝑐 (ν𝑖 ,ν𝑗 )α𝑐

𝑗 , 𝑐 ∈ {𝑦0, 𝑦1, 𝑞0, 𝑞1, 𝑥,𝑤},

where ν( ·) is the input obtained from the tuples in D. In particular,
ν( ·) = zd

𝑖
[𝑙] for 𝑐 = {𝑦0, 𝑦1, 𝑥,𝑤} and ν( ·) = (xd

𝑖
, 𝑦d

𝑖
) for 𝑐 ∈

{𝑞0, 𝑞1}. The coefficients α𝑐
𝑗
are vectors in the Hilbert space F𝑐 .

Minimizing 𝐽 with respect to α𝑐
𝑗
and parameters of specific

kernel functions (e.g., Radial basis function kernel, Matérn kernel,

Rational Quadratic kernel, etc.), we obtain the functions 𝑓𝑐 and

thus the distributions 𝑝 (𝑦t
𝑖
|zt
𝑖
,𝑤 t

𝑖
) and 𝑞(zt

𝑖
|xt
𝑖
,𝑤 t

𝑖
, 𝑦t

𝑖
). The proof of

Lemma 1 is presented in Appendix B.

Transferable kernel function. The controlling of knowledge

transfer is via the kernel functions τ𝑐 in Lemma 1. Let d1 and d2
be two populations, i.e., d1, d2 ∈ {t} ∪ S. Let νd1

𝑖
and νd2

𝑗
be two
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data points obtained from two tuples of the datasetD (νd1
𝑖

and νd2
𝑗

can be portions of the tuple depending on the input to the kernel

function τ𝑐 ). We propose to use

τ𝑐 (νd1
𝑖
,νd2

𝑗
) =


𝜆 (d1,d2 )𝑘𝑐 (νd1

𝑖
,νd2

𝑗
), if d1 ≠ d2,

𝜆 (d1,d2 )𝑘𝑐 (νd1
𝑖
,νd2

𝑗
), otherwise,

(11)

where we use a learnable parametric coefficient 𝜆 (d1,d2 ) ∈ [0, 1],
which we call the transfer factor, to re-weight the similarity of the

two populations d1 and d2. Since there are𝑚 source populations

and one target population, we would have 𝑚(𝑚 + 1)/2 transfer

factors. This is the first level of knowledge transfer in our method.

𝑘𝑐 (·, ·) in Eq. (11) is a typical kernel function such as Matérn kernel,

radial basis function (RBF) kernel, or rational quadratic (RQ) kernel.

The transfer factors 𝜆 (d1,d2 ) (∀d1 ≠ d2) are learned together with

the parameters 𝜶𝑐
( ·) and hyperparameters of the kernel function

𝑘𝑐 (·, ·). When 𝜆 (d1,d2 ) = 1, it indicates that the two populations are

highly related, this is equivalent to simply combining the source and

target data. When 𝜆 (d1,d2 ) = 0, the two populations are completely

unrelated, it corresponds to learning the desired distributions with

target data only. For 0 < 𝜆 (d1,d2 ) < 1, the desired distributions on

the target population are learned with target data and partial of the

source data.

Lemma 2. Let α𝑞0
𝑗

and α𝑞1
𝑗

be fixed. Then, the objective function
𝐽 in Lemma 1 is convex with respect to α𝑐

𝑗
for all 𝑐 ∈ {𝑦0, 𝑦1, 𝑥,𝑤}.

The proof of Lemma 2 is presented in Appendix C. Lemma 2

implies that if α𝑞0
and α𝑞1

reach their convex hull, 𝐽 will reach its

minimal point. This is because the non-convexity of 𝐽 is induced by

α𝑞0
andα𝑞1

. This result shows that we should try different random

initialization on α𝑞0
and α𝑞1

rather than the other parameters

when optimizing 𝐽 .

3.4.2 2𝑛𝑑 Level: Learning Conditional Distribution of the Outcome.

This section presents the learning of 𝑝 (𝑦t
𝑖
|xt
𝑖
,𝑤 t

𝑖
). We denote

its approximation as 𝑝 (𝑦t
𝑖
|xt
𝑖
,𝑤 t

𝑖
). Here we also adaptively transfer

knowledge from source populations to the target population. As all

the variables involved are observed, we learn these distributions

by maximizing log-likelihood of the observed data. Specifically, we

model

𝑝 (𝑦d𝑖 |x
d
𝑖 ,𝑤

d
𝑖 ) = N

(
𝑦d𝑖 ;𝑔(x

d
𝑖 ,𝑤

d
𝑖 ), 𝜎̃

2

𝑦

)
for continuous outcome, and

𝑝 (𝑦d𝑖 |x
d
𝑖 ,𝑤

d
𝑖 ) = Bern

(
𝑦d𝑖 ;𝜑 (𝑔(x

d
𝑖 ,𝑤

d
𝑖 ))

)
for binary outcome, where 𝜎̃2𝑦 is the noise variance and 𝜑 (·) is the
logistic function.Wemodel𝑔(xd

𝑖
,𝑤d

𝑖
) = 𝑤d

𝑖
𝑔1 (xd𝑖 )+(1−𝑤

d
𝑖
) 𝑔0 (xd𝑖 ),

where 𝑔0 : X ↦→ F𝑦0 and 𝑔1 : X ↦→ F𝑦1 are functions modelling the

outcome when the treatment𝑤d
𝑖
= 0 and𝑤d

𝑖
= 1, respectively. We

obtain the regularized empirical risk as follows:

𝐽𝑦 = L̂𝑦 (𝑔0, 𝑔1) + 𝛾𝑦0 ∥𝑔0∥2V𝑦
+ 𝛾𝑦1 ∥𝑔1∥2V𝑦

, (12)

where L̂𝑦 (·) is the negative log-likelihood, V𝑦 is a reproducing

kernel Hilbert space associated a kernel function𝜓𝑦 (xd1𝑖 , xd2
𝑗
), and

𝛾𝑦0 , 𝛾𝑦1 ∈ R+. Herein, d1, d2 ∈ {t} ∪ S are two populations. So we

Algorithm 1: Learning the model

Input : { (𝑦t
𝑖
, 𝑤t

𝑖
, xt

𝑖
) }𝑛t

𝑖=1
and { (𝑦s

𝑖
, 𝑤s

𝑖
, xs

𝑖
) }𝑛s

𝑖=1
for all s ∈ S.

1 begin
2 Optimize 𝐽 in Eq. (10) to obtain 𝑝 (𝑦t

𝑖
|zt
𝑖
, 𝑤t

𝑖
) & 𝑞 (zt

𝑖
|xt
𝑖
, 𝑤t

𝑖
, 𝑦t

𝑖
) ;

3 Optimize 𝐽𝑦 in Eq. (12) to obtain 𝑝̃ (𝑦t
𝑖
|xt
𝑖
, 𝑤t

𝑖
) ;

4 Optimize 𝐽𝑤 (Section 3.4.3) to obtain 𝑝̃ (𝑤t
𝑖
) |xt

𝑖
) ;

Algorithm 2: Estimating causal effects

Input : Set of covariates {xt∗𝑖 }
𝑛∗
𝑖=1

of 𝑛∗ individuals.
The distributions obtained from Algorithm 1.

1 begin
2 𝐿 ← ∅;
3 for 𝑖 ← 1 to 𝑛∗ do
4 𝐿0 ← ∅ and 𝐿1 ← ∅;
5 for 𝑗 ← 1 to M do
6 Draw a sample 𝑤 from 𝑝̃ (𝑤t

𝑖
) |xt

𝑖
= xt∗𝑖 ) ;

7 Draw a sample 𝑦 from 𝑝̃ (𝑦t
𝑖
|xt
𝑖
= xt∗𝑖 , 𝑤

t
𝑖
=𝑤 ) ;

8 Draw 𝑧 from 𝑞 (zt
𝑖
|xt
𝑖
= xt∗𝑖 , 𝑤

t
𝑖
= 𝑤, 𝑦t

𝑖
= 𝑦) ;

9 Draw 𝑦0 from 𝑝 (𝑦t
𝑖
|zt
𝑖
= 𝑧, 𝑤t

𝑖
= 0) and add it to 𝐿0;

10 Draw 𝑦1 from 𝑝 (𝑦t
𝑖
|zt
𝑖
= 𝑧, 𝑤t

𝑖
= 1) and add it to 𝐿1;

11 Compute ITE: îte𝑖 ← (
∑

𝑦1∈𝐿1 𝑦1 −
∑

𝑦0∈𝐿0 𝑦0 )/𝑀 ;

12 Add îte𝑖 to 𝐿;

13 Compute ATE: âte = 1

𝑛∗
∑𝑛∗

𝑖=1
îte𝑖 ;

14 return âte, { îte𝑖 }𝑛∗𝑖=1

use another set of transfer factors 𝛿 (d1,d2 ) ∈ [0, 1] to re-weight the

cross-population similarity. The transfer factors here are learned

from data.

3.4.3 3𝑟𝑑 Level: Learning Conditional Distribution of the Treatment.

We denote the approximation of 𝑝 (𝑤 t
𝑖
|xt
𝑖
) as 𝑝 (𝑤d

𝑖
|xd
𝑖
). Since the

treatment is binary, it can be modeled by the Bernoulli distribution.

Concretely, 𝑝 (𝑤d
𝑖
|xd
𝑖
) = Bern

(
𝑤d
𝑖
;𝜑 (ℎ(xd

𝑖
))
)
, where ℎ : X ↦→ F𝑤 .

Similar to the above, the regularized empirical risk obtained from

the negative log-likelihood is 𝐽𝑤 = L̂𝑤 (ℎ) + 𝛾𝑤 ∥ℎ∥2V𝑤
, where

V𝑤 is a reproducing kernel Hilbert space associated with a kernel

function𝜓𝑤 (xd1𝑖 , xd2
𝑗
). Here we use another set of transfer factors

𝜂 (d1,d2 ) ∈ [0, 1].
To sum up, we have introduced three levels of knowledge transfer

from multiple source populations to the target population via an

augmented-representer theorem algorithm and transfer kernels.

This enables an adaptive causal inference algorithm to estimate

causal effects in the target population.

We summarize the training steps in Algorithm 1 and the steps

to estimate causal effects in Algorithm 2.

4 EXPERIMENTS
Baselines and the aims of our experiments. In this section,

we first perform a set of experiments to verify the effectiveness

of our proposed model (AdaTRANS) in adaptively transferring

knowledge from source populations to the target population, and

thus improving the estimation of the treatment effects of interest.

Here we aim to illustrate the importance of our proposed adaptive

transfer learning method in estimating causal effects. Our second
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analysis is to compare the proposed method against some recent

baselines including BART [17], CFRNet [47], CEVAE [24], OrthoRF

[31], SITE [53], X-learner [21], and R-learner [30]. These baselines

do not consider data scarcity problem in the target population. The

aim of this analysis is to show the efficacy of our method when

some sources of data are available.

The setups of neural networks in Louizos et al. [24] (CEVAE)

and [53] (SITE) closely follow that of Shalit et al. [47] (CFRNet).

Thus we also use these settings in our experiments. In partic-

ular, we use fully connected networks with activation function

ELU and use the same number of hidden nodes in each hidden

layer. We fine-tune all the networks with {1, 2,..., 6} hidden lay-

ers, {50, 100, 200} number of nodes per layer, and learning rate in

{1𝑒-1, 1𝑒-2, 1𝑒-3, 1𝑒-4}. We reuse the code of these methods which

are available online. For implementation of BART [17], we use pack-

age BartPy which is also available online. For X-learner [21] and

R-learner [30], we use package causalml [11]. In both methods,

we use xgboost.XGBClassifier as learners for binary outcomes

and xgboost.XGBRegressor as learners for continuous outcomes.

For OrthoRF [31], we use package econml [28].

Evaluation metrics. Two comparison metrics are used in our ex-

periments: precision in estimation of heterogeneous effects (PEHE)

[17]: 𝜖PEHE = 𝐸 [((𝑦1 − 𝑦0) − (𝑦1 − 𝑦0))2] for evaluating ITE, and

absolute error: 𝜖ATE = |𝐸 [𝑦1 −𝑦0] −𝐸 [𝑦1 −𝑦0] | for evaluating ATE,
where 𝑦0, 𝑦1 are the ground truth of outcomes from the interven-

tion and 𝑦0, 𝑦1 are their estimates. The reported numbers are the

out-of-sample mean and standard error over 10 replicates of the

data with different random initializations of the training algorithm.

4.1 Synthetic Data
Data description. Obtaining the ground-truth of causal inference

problems is challenging, and thus most of recent methods utilize

synthetic or semi-synthetic datasets for evaluation. In this experi-

ment, we generate synthetic datasets, each comprises of data from

𝑚 source populations (S = {s1, s2,..., s𝑚}) and one target (t) popu-
lation. Our aim is to show that the estimated ITE and ATE on the

target population is closer to the true values when utilizing knowl-

edge transferred from the source population. For each individual 𝑖

in the population d ∈ {t} ∪ S, we draw the latent confounder zd
𝑖
,

the proxy variable xd
𝑖
, the treatment𝑤d

𝑖
and the outcome 𝑦d

𝑖
using

the following equations

zd𝑖 ∼ N(0, 𝜎2𝑧 I2), 𝑥d𝑖 𝑗 ∼ Bern(𝜑 (𝑎0𝑗 + (zd𝑖 )
⊤𝒂1𝑗 )),

𝑤d
𝑖 ∼ Bern(𝜑 (𝑏0 + (zd𝑖 )

⊤𝒃d
1
)), 𝑦d𝑖 (0) ∼ N(𝜁 (𝑐0 + (zd𝑖 )

⊤𝒄d
1
), 𝜎2𝑦),

𝑦d𝑖 (1) ∼ N(𝜁 (𝑑0 + (zd𝑖 )
⊤𝒅d

1
), 𝜎2𝑦),

where 𝜑 (·) is the standard logistic function, and 𝜁 (·) is the softplus
function. We randomly set the ground truth parameters (𝜎𝑧 , 𝜎𝑦) =
(
√
8,
√
2), (𝑏0, 𝑐0, 𝑑0) = (0.5, 0.7, 2.0), and draw the ground truth

𝑎0𝑗 ∼ N(0, 2) and 𝒂1𝑗 ∼ N(0, 2 · I2) (for 𝑗 = 1, 2,..., 30). Herein, the

number of dimensions of the latent confounder zd
𝑖
is 𝑑𝑧 = 2 and the

number of proxy variables is 𝑑𝑥 = 30. The parameters 𝒃d
1
, 𝒄d

1
, 𝒅d

1
on

different population dwould have different ground truth values. The
aim is to simulate the difference of the data distribution in different

populations, which showcases the effectiveness of our model. We

will describe these three parameters in the specific analyses. From

the above simulation, we obtain 𝑦d
𝑖
= 𝑤d

𝑖
𝑦d
𝑖
(1) + (1 −𝑤d

𝑖
) 𝑦d

𝑖
(0),

i.e., 𝑦d
𝑖

= 𝑦d
𝑖
(1) when 𝑤d

𝑖
= 1 and 𝑦d

𝑖
= 𝑦d

𝑖
(0) when 𝑤d

𝑖
= 0.

For each individual 𝑖 , we only keep (𝑦d
𝑖
,𝑤d

𝑖
, xd

𝑖
) as the observed

data, and discard zd
𝑖
. For each population d (source or target), we

simulate a set of 𝑛d = 1000 individuals. Thus, the total number

source observations is𝑚 × 1000. For the target data, since this data
is scarce, we only use 50 for training, 100 for validation and 850

for testing. In the subsequent sections, we present the performance

analysis of AdaTRANS (the proposed method) compared with the

baselines on this dataset.

4.1.1 Analysis I: The Importance of Adaptive Transfer.

Additional setups on the synthetic data. To verify the proposed

adaptively causal transfer learning model, here we use one source

population s (𝑚 = 1) and one target population t. We will analyse on

multi-source (𝑚 > 1) in the subsequent sections. In this experiment,

we have two sets of ground truth parameters (𝒃s
1
, 𝒄s

1
, 𝒅s

1
) and (𝒃t

1
,

𝒄t
1
, 𝒅t

1
) and we set them differently as follows

𝒃t
1
= [1.1, 1.7]⊤, 𝒄t

1
= [1.5, 1.8]⊤, 𝒅t

1
= [1.5, 2.8]⊤

𝒃s
1
= 𝒃t

1
+ Δs [1, 1]⊤, 𝒄s

1
= 𝒄t

1
+ Δs [1, 1]⊤, 𝒅s

1
= 𝒅t

1
+ Δs [1, 1]⊤,

where we vary Δs ∈ {0.0, 0.5, 1.0, 1.5, 2.0} to obtain different in-

stances of the source data, which simulates the similarity/dissimilarity

between the source and the target. Here, Δs
denotes the discrepancy

between the source and target population.

Results and discussion. Figure 2 presents the performance of

AdaTRANS (the proposed method) compared with the case of full

transfer (transfer factor is set to 1) and the case of no transfer (trans-

fer factor is set to 0). The figure clearly shows that our proposed

method can adaptively learn the transfer factors 𝜆 (t,s) , 𝛿 (t,s) , 𝜂 (t,s)

to control the knowledge transfer from source to target data. In

general, the more discrepant the source and target population is,

the lower transfer factors are. Thus, it results in better performance

of our adaptive transfer than full transfer and no transfer. On our

second analysis, we study the importance of each level of knowl-

edge transfer in our proposed method. So we turn off one of the

transferring level and observe the performance. Figure 3 illustrates

the performance of each case compared with ‘adaptive transfer’ on

all levels. The figure shows that the first level (learning 𝜆 (t,s) ) is
the most important as the performance would reduce more when

we turn off this parameter (set 𝜆 (t,s) = 0). This is the transferring

level of learning distributions regarding latent confounders. Hence,

learning latent confounders plays an important role in estimating

causal effects.

4.1.2 Analysis II: Multiple Sources.

Additional setups on the synthetic data. In this experiment, we

simulate𝑚 = 4 data sources where the ground truth of 𝒃t
1
, 𝒄t

1
, 𝒅t

1
are

set as in the previous experiment in Analysis I. The other parameters

𝒃s
1
, 𝒄s

1
, 𝒅s

1
(where s ∈ {s1, s2, s3, s4}) are set as (Δs1 ,Δs2 ,Δs3 ,Δs4 ) =

(2.0, 1.5, 1.0, 0.5). Hence, different source populations have different
levels of discrepancy to the target one.

Results and discussion. Figure 4 reports the performance of Ada-

TRANS (adaptive transfer) compared with full transfer and no trans-

fer. In Figure 4, #1 source means that the source s1 is used, #2 source
means that s1, s2 are used, and so on, i.e., more sources that are
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Figure 2: Adaptively causal transfer learning analysis.
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Figure 3: Partially causal transfer analysis.
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Figure 4: Multi-source causal transfer analysis

more and more similar to the target are added. The figure shows

that the more data sources, the better performance of our model. In

the case of full transfer, the errors also reduce when more sources

are added. This is because we are adding more sources that are

more and more similar to the target data.

4.1.3 Analysis III: Compare with the Baselines.

Two setups of the baselines. In this section, we compare Ada-

TRANS with the baselines. For each baseline, we train with two

cases as follows. (1) In the first case, we combine sources and target

data by adding a categorical covariate to indicate the population of

each entry in the dataset. This categorical covariate is then trans-

formed into a ‘1-hot vector’ for training the models. (2) In the

second case, we combine source and target data by ‘stacking’ them,

i.e., there is no additional covariate. The data we use in this analysis

is the one simulated in Analysis II.

Results and discussion. Table 1 reports the performance of each

method in estimating ATE and ITE. In term of predicting ATE, the

figures (three last columns) show significant improvement when

adding more data sources (for 2 and 4 sources). In term of predicting

ITE, the figures also show that AdaTRANS achieves lower error

Table 1: Out-of-sample error on synthetic dataset with differ-
ent number of data sources. The dashes (—) in ‘1-hot’ indicate
that the numbers are the same as those of ‘stack’.

Method
The error of ITE (

√
𝜖PEHE) The error of ATE (𝜖ATE)

0-source 2-sources 4-sources 0-source 2-sources 4-sources

CEVAE
stack

3.1±.30 4.6±.39 4.8±.40 1.7±.29 2.8±.30 2.5±.26
CFRNet

stack
4.6±.51 8.9±.50 6.0±.19 1.6±.41 6.1±.48 4.0±.17

SITE
stack

6.0±.98 8.9±.61 7.5±.60 3.3±.67 6.4±.79 5.0±.76
BART

stack
2.5±.06 2.3±.03 2.2±.06 1.2±.13 0.7±.08 0.6±.09

R-learner
stack

3.0±.27 2.2±.11 1.8±.09 1.4±.35 1.2±.17 1.0±.10
X-learner

stack
2.0±.13 2.2±.12 1.9±.13 1.0±.17 1.0±.11 1.1±.13

OrthoRF
stack

6.2±.40 2.4±.03 2.2±.03 1.2±.37 0.5±.08 0.6±.06
CEVAE

1-hot
— 5.0±.43 3.3±.12 — 3.1±.42 1.9±.23

CFRNet
1-hot

— 4.4±.26 3.3±.21 — 3.3±.26 2.1±.17
SITE

1-hot
— 5.8±.99 3.2±.25 — 3.4±.67 2.1±.21

BART
1-hot

— 2.3±.03 2.2±.04 — 0.7±.10 0.4±.10
R-learner

1-hot
— 2.0±.07 1.7±.15 — 0.8±.15 0.8±.20

X-learner
1-hot

— 1.9±.12 1.8±.10 — 0.7±.13 0.6±.12
OrthoRF

1-hot
— 5.5±.30 4.1±.16 — 3.9±.22 2.6±.17

AdaTRANS 1.6±.09 1.3±.03 1.3±.02 1.1±.13 0.2±.05 0.1±.03

even with 0-source. This might be because of the advantage of

using kernel method, which give a flexible modelling for non-linear

functions. The figures also reveal that negative transfer happened

in CEVAE, CRFNet and SITE since the performance of these method

decrease when adding more data sources whose distributions are

different from that of the target. We also observe that positive trans-

fer appears in BART, R-learner, X-learner, and OrthoRF. In addition,

the baselines trained with combination of sources and target data

by adding a categorical covariate to indicate the population (1h)

tends to give better performance than the baselines of stacking

datasets (st). This is because the 1h case would have access to the

source, hence reducing negative transfer.

4.2 Twins Dataset
Data description. The Twins dataset contains multiple records of

twin births in the US from 1989 to 1991 [24]. An abstract treatment

𝑤𝑖 = 1 corresponds to the twin born with heavier weight and

likewise,𝑤𝑖 = 0 corresponds to the twin born with lighter weight.

The outcome corresponds to the mortality of each of the twins in

their first year of life. Since there are records for both twins, the

mortality of twins has two possible outcomes (e.g., dead or alive)

with respect to the treatment𝑤𝑖 ∈ {0, 1}. Following Louizos et al.
[24], we focused on twins with both weighing less than 2kg.

The observational study is simulated as follows. For each pair

of twins, observation regarding one of them is randomly excluded.

The entire dataset is then partitioned into two sets: source and

target data. The source data accounts for 81% (3921 entries) and

the target data account for 19% (900 entries). In the target data, we

1981
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Figure 5: Out-of-sample error of ATE and ITE on Twins
dataset.
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Figure 6: Out-of-sample error of ATE and ITE on Twins
dataset for R-learner vs. AdaTRANS.

use 9-fold cross-validation with 100 entries for training, 100 for

validation, and 700 for testing.

Simulation of latent confounders. To simulate the case of latent

confounders with proxy variables, the treatment assignment on

twins is based on feature GESTAT10, which records the number of

gestation weeks prior to birth and is highly correlated with the

mortality outcome. We obtain the observed treatments by drawing

from the following distribution𝑤d
𝑖
| 𝑧d
𝑖
∼ Bern(𝜑 (𝑏d (0.1𝑧d

𝑖
− 0.1))),

where d ∈ {s, t} and 𝑧d
𝑖
is GESTAT10. We set𝑏t = 0.2 and𝑏s = 𝑏t+Δs

to simulate discrepancy between the source and target data.We vary

Δs ∈ {0.0, 0.5, 1.0, 1.5, 2.0, 2.5}. Following Louizos et al. [24], we

created proxies xd
𝑖
for the hidden confounder zd

𝑖
as follows: The 10

categories of feature GESTAT10 are encoded with one-hot encoding,

and are replicated three times. We use three replications to ensure

that the confounder can be recovered [follow from 3, 4, 20, 24]. The

resulting target data has 30 dimensions for proxy variable xd
𝑖
.

Results and discussion. The performance of AdaTRANS and the

baselines are presented in Figure 5. It can be observed that Ada-

TRANS achieves lower error at all levels of discrepancy between

the source and the target data. The errors of SITE and X-learner in

predicting ATE (𝜖ATE) is high, this might be because those methods

only consider observed confounders (through the unconfounded-

ness assumption) and ignore latent confounders. Although CEVAE

can handle latent confouders, it is based on deep neural networks,

and hence needs a huge dataset to achieve a good performance.

SITE and CEVAE are based on neural networks, their performance

depends on the tuning of hyperparameters and the optimization

algorithm. Hence, they might lead to a local optima. Our method, on

the other hand, models complex non-linear function using kernel

functions while obtaining convex or conditionally convex objective

Table 2: Out-of-sample error on IHDP dataset with different
number of data sources. The dashes (—) in ‘1-hot’ indicate
that the numbers are the same as those of ‘stack’.

Method
The error of ITE (

√
𝜖PEHE) The error of ATE (𝜖ATE)

0-source 1-sources 0-source 1-sources

CEVAE
stack

4.38±2.11 4.09±2.01 2.39±1.06 1.68±0.79
CFRNet

stack
5.62±2.60 5.54±2.66 4.15±1.77 4.06±1.84

SITE
stack

5.84±2.76 5.90±2.74 4.45±1.98 4.57±1.96
BART

stack
5.44±2.68 4.37±2.29 3.85±1.88 2.25±1.26

R-learner
stack

5.47±2.49 2.93±1.12 3.05±1.88 0.70±0.42
X-learner

stack
3.90±2.06 2.64±1.09 2.48±1.61 1.00±0.49

OrthoRF
stack

4.91±2.38 2.97±1.65 3.10±1.76 2.01±1.22
CEVAE

1-hot
— 4.16±2.07 — 1.91±0.88

CFRNet
1-hot

— 5.54±2.66 — 4.05±1.84
SITE

1-hot
— 5.97±2.70 — 4.65±1.90

BART
1-hot

— 4.46±2.34 — 2.37±1.34
R-learner

1-hot
— 2.52±0.12 — 0.95±0.25

X-learner
1-hot

— 2.64±1.09 — 1.08±0.49
OrthoRF

1-hot
— 3.74±2.24 — 2.52±1.86

AdaTRANS 3.60±2.04 2.46±1.09 1.94±1.23 0.70±0.20

functions (as stated in Lemma 2). Note that BART does not support

binary outcomes so we do not report it on this dataset. R-learner

seems to perform the worst with all of our fine-tuning setups. For

a clear illustration, we report experimental results of R-learner in

Figure 6.

4.3 IHDP Dataset
Data description. IHDP (Infant Health and Development Program)

dataset contains data of a study on the effect of specialist visits on

children’s cognitive development. This dataset has 747 data points

and 25 covariates. The covariates are properties of the children and

their mother’s. There are two groups of children in this dataset: with

and without specialist visit. We use NPCI package [12] to simulate

the two outcomes of each child: one outcome for this child with

specialist visit, and another outcome for the same child, but without

specialist visit. Hence, we can obtain the true individual treatment

effect. We use 𝑘-means on the covariates to divide the data into

two sets. Each set is then considered as data from a population. We

choose the first set as data of the target population and the other

set is data of the source population.

Results and discussion. The baselines in this experiment are also

trained in two cases: using ‘1-hot vector’ in combining data and

stacking the data. Table 2 shows that our method outperforms the

baselines in both of the evaluation metrics. We also observe that

the errors when using one source are lower than those of without

using any source . In addition, the performance of the baselines

when using ‘one-hot vector’ are worse than those of ‘stack’. These

results might be because the source and the target data come from

the same distribution, hence adding a one-hot vector to indicate the

population (source or target) for each data point would reduce effect

of the source on the target population. When training with target

data only (0-source), the proposed method still outperforms the

baselines, this result shows the advantage of the proposed kernel-

based method.

5 CONCLUSION
We have presented a knowledge transfer method to estimate ITE

and ATE in a target population. Our method utilises multiple data

sources and adaptively transfers knowledge from them to the target
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population to infer the causal effects. Our method is different from

the existing works in that it models the nonlinear functions using

adaptive transfer kernels and representer theorem. It requires no

prior knowledge on data discrepancy of the source and the target

population, and fewer tuning of the model architecture.

A potential limitation of our approach lies in the assumption that

the source populations and target population share the same causal

graphs and the causal effects in all populations are identifiable with

their own observed data. An interesting topic for future research

is to generalize the problem to the setting where causal effects in

the target population may be unidentifiable. Another direction is

to study the statistical guarantees of identification of the latent

confounders with proxy variables.
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A EXAMPLE ON NAIVELY COMBINING DATA
We give a simple illustration on why there are biases in the causal

estimands if the outcome distribution of the source and target

population are different. Suppose we have one source population

whose distributions of the outcomes are:𝑦s (0) ∼ N(100+2𝑥, 1) and
𝑦s (1) ∼ N(105 + 2𝑥, 1). The distributions on the target population

are: 𝑦t (0) ∼ N(110 + 2𝑥, 1) and 𝑦t (1) ∼ N(120 + 2𝑥, 1). Herein, we
assume that 𝑥 is an observed confounder. The true ATE and ITE in

the target population are 10. In real-life, we cannot observe both of

the outcomes, but for illustration purpose, we suppose that they are

both known. A combination of the two populations would result in

mixture distributions of the outcomes:𝑦 (0) ∼ (1−𝜋)N(100+2𝑥, 1)+
𝜋N(110 + 2𝑥, 1) and 𝑦 (1) ∼ (1− 𝜋)N(105 + 2𝑥, 1) + 𝜋N(120 + 2𝑥, 1),
where 𝜋 ∈ (0, 1) is small and close to 0 since the target observational

data is scarce and much less than that of the source population. In

this case, the ideal estimated ATE and ITE are 𝐸 [𝑌 (1) − 𝑌 (0)] =
𝐸 [𝑌 (1) − 𝑌 (0) |𝑋 = 𝑥] = 5(1 − 𝜋) + 10𝜋 = 5 + 5𝜋 . Since 𝜋 is

small, this estimand is much less than the true treatment effects

in the target population (which is 10). In real-life, only one of the

two outcomes is observed and there might be latent confounders,

the causal estimand would be even worse than the above ideal

estimation.

B PROOF OF LEMMA 1
Proof. We restate that 𝑓𝑦0 : Z ↦→ F𝑦0 , 𝑓𝑦1 : Z ↦→ F𝑦1 , 𝑓𝑞0 : Y×

X → F𝑧 , 𝑓𝑞1 : Y × X → F𝑧 , 𝑓𝑤 : Z ↦→ F𝑤 and 𝑓𝑥 : Z ↦→ F𝑥 . In
this work, F𝑦0 = R, F𝑦1 = R, F𝑤 = R, F𝑥 = R𝑑𝑥 and F𝑧 = R𝑑𝑧 .
We further define 𝑓𝑥 = [𝑓𝑥,1,..., 𝑓𝑥,𝑑𝑥 ] with 𝑓𝑥,𝑑 : Z ↦→ R (𝑑 =

1, . . . , 𝑑𝑥 ). Similarly, 𝑓𝑞0 = [𝑓𝑞0,1,..., 𝑓𝑞0,𝑑𝑧 ] with 𝑓𝑞0,𝑑 : Y × X ↦→ R
(𝑑 = 1, . . . , 𝑑𝑧 ) and 𝑓𝑞1 = [𝑓𝑞1,1,..., 𝑓𝑞1,𝑑𝑧 ] with 𝑓𝑞1,𝑑 : Y × X ↦→
R (𝑑 = 1, . . . , 𝑑𝑧 ). Consider the subspaces U𝑐 ⊂ H𝑐 (where 𝑐 ∈
{𝑦0, 𝑦1, 𝑞0, 𝑞𝑞, 𝑥,𝑤}):

U𝑦0 = span
{
κ𝑦0 (·, zd𝑖 [𝑙]) : d ∈ S; 𝑖 =1,..., 𝑛d; 𝑙 =1,..., 𝐿

}
,

U𝑦1 = span
{
κ𝑦1 (·, zd𝑖 [𝑙]) : d ∈ S; 𝑖 =1,..., 𝑛d; 𝑙 =1,..., 𝐿

}
,

U𝑥 = span
{
κ𝑥 (·, zd𝑖 [𝑙]) : d ∈ S; 𝑖 =1,..., 𝑛d; 𝑙 =1,..., 𝐿

}
,

U𝑤 = span
{
κ𝑤 (·, zd𝑖 [𝑙]) : d ∈ S; 𝑖 =1,..., 𝑛d; 𝑙 =1,..., 𝐿

}
,

U𝑞0 = span
{
κ𝑞0 (·, [𝑦d𝑖 , x

d
𝑖 ]) : d ∈ S; 𝑖 =1,..., 𝑛d

}
,

U𝑞1 = span
{
κ𝑞1 (·, [𝑦d𝑖 , x

d
𝑖 ]) : d ∈ S; 𝑖 =1,..., 𝑛d

}
.

We project 𝑓𝑦0 , 𝑓𝑦1 , 𝑓𝑤 , 𝑓𝑥,𝑑 (𝑑 = 1,..., 𝑑𝑥 ), 𝑓𝑞0,𝑑 (𝑑 = 1,..., 𝑑𝑧 ) and

𝑓𝑞1,𝑑 (𝑑 = 1,..., 𝑑𝑧 ) onto the subspacesU𝑦0 ,U𝑦1 ,U𝑤 ,U𝑥 ,U𝑞0 and

U𝑞1 , respectively, to obtain 𝑓 s𝑦0 , 𝑓
s

𝑦1
, 𝑓 s𝑤 , 𝑓

s

𝑥,𝑑
, 𝑓 s

𝑞0,𝑑
and 𝑓 s

𝑞1,𝑑
, and

also project them onto the perpendicular spaces of the subspaces to

obtain 𝑓 ⊥𝑦0 , 𝑓
⊥
𝑦1
, 𝑓 ⊥𝑤 , 𝑓 ⊥

𝑥,𝑑
, 𝑓 ⊥
𝑞0,𝑑

and 𝑓 ⊥
𝑞1,𝑑

. Note that 𝑓 s( ·) + 𝑓
⊥
(·) = 𝑓( ·) .

Thus, ∥ 𝑓( ·) ∥2H( ·) = ∥ 𝑓 s( ·) ∥
2

H( ·)
+ ∥ 𝑓 ⊥(·) ∥

2

H( ·)
≥ ∥ 𝑓 s( ·) ∥

2

H( ·)
, which

implies that 𝛾 ( ·) ∥ 𝑓( ·) ∥2H( ·) is minimized if 𝑓( ·) is in its subspace

U( ·) . (1)

Moreover, from the reproducing property, we have that

𝑓𝑦0 (zd𝑖 [𝑙]) =
〈
𝑓𝑦0 , κ𝑦0 (·, zd𝑖 [𝑙])

〉
H𝑦

=
〈
𝑓 s𝑦0 , κ𝑦0 (·, z

d
𝑖 [𝑙])

〉
H𝑦
+
〈
𝑓 ⊥𝑦0 , κ𝑦0 (·, z

d
𝑖 [𝑙])

〉
H𝑦

= 𝑓 s𝑦0 (z
d
𝑖 [𝑙]).

Similarly, we have 𝑓𝑦1 (zd𝑖 [𝑙]) = 𝑓 s𝑦1 (z
d
𝑖
[𝑙]), 𝑓𝑤 (zd𝑖 [𝑙]) = 𝑓 s𝑤 (zd𝑖 [𝑙]),

𝑓𝑥,𝑑 (z𝑙𝑖 ) = 𝑓 s
𝑥,𝑑
(zd
𝑖
[𝑙]), 𝑓𝑞0,𝑑 (𝑦d𝑖 , x

d
𝑖
) = 𝑓 s

𝑞0,𝑑
(𝑦d

𝑖
, xd

𝑖
), 𝑓𝑞1,𝑑 (𝑦d𝑖 , x

d
𝑖
) =

𝑓 s
𝑞1,𝑑
(𝑦d

𝑖
, xd

𝑖
). Hence,

L̂(𝑓𝑦0 , 𝑓𝑦1 , 𝑓𝑞0 , 𝑓𝑞1 , 𝑓𝑥 , 𝑓𝑤) = L̂(𝑓 s𝑦0 , 𝑓
s

𝑦1
, 𝑓 s𝑞0 , 𝑓

s

𝑞1
, 𝑓 s𝑥 , 𝑓

s

𝑤) .

The last equation implies that L̂(·) depends only on the component

of 𝑓𝑦0 , 𝑓𝑦1 , 𝑓𝑤 , 𝑓𝑥,𝑑 , 𝑓𝑞0,𝑑 , 𝑓𝑞1,𝑑 lying in the subspaces U𝑦0 , U𝑦1 ,

U𝑤 ,U𝑥 ,U𝑞0 ,U𝑞1 , respectively. (2)

From (2) and (2), we obtain that each 𝑓𝑐 is the weighted sum

of elements in U𝑐 (𝑐 ∈ {𝑦0, 𝑦1, 𝑞0, 𝑞1, 𝑥,𝑤}). This completes the

proof. □

C PROOF OF LEMMA 2
Proof. From Lemma 1, the objective function 𝐽 is a combination

of several components including (α𝑐 )⊤Cα𝑐
, c⊤α𝑐

,−c⊤ log𝜑 (Dα𝑐 ),
and −(1 − w)⊤ log𝜑 (−Dα𝑐 ), where 𝑐 ∈ {𝑦0, 𝑦1,𝑤, 𝑥, 𝑞0, 𝑞1}, C is

a positive semi-definite matrix, c is a vector, and D is a matrix

computed by kernel functions.

For the first and second term, we have

∇2α𝑐

{
(α𝑐 )⊤Cα𝑐

}
= C + C⊤ = 2C ⪰ 0, ∇2α𝑐

{
c⊤α𝑐

}
= 0 ⪰ 0,

where ‘⪰ 0’ indicates that the matrix is positive semi-definite.

For the third term, we have

∇α𝑐

{
−w⊤ log𝜑 (Dα𝑐 )

}
= −(∇α𝑐 log𝜑 (Dα𝑐 ))w
= −D⊤diag(w)𝜑 (−Dα𝑐 ),

and thus

∇2α𝑐

{
−w⊤ log𝜑 (Dα𝑐 )

}
= −(∇α𝑐𝜑 (−Dα𝑐 )) (D⊤diag(w))⊤

= −(∇α𝑐𝜑 (−Dα𝑐 ))diag(w)D
= D⊤diag(𝜑 (−Dα𝑐 ) ⊙ 𝜑 (Dα𝑐 ) ⊙ w)D ⪰ 0.

Similarly, for the last term, we have

∇α𝑐

{
− (1 −w)⊤log𝜑 (−Dα𝑐 )

}
= D⊤diag(1 −w)𝜑 (Dα𝑐 ),

and

∇2α𝑐

{
− (1 −w)⊤ log𝜑 (−Dα𝑐 )

}
= D⊤diag(𝜑 (Dα𝑐 ) ⊙ 𝜑 (−Dα𝑐 ) ⊙ (1 −w))D ⪰ 0.

Consequently, 𝐽 is convex because it is a linear combination of

convex functions. □

1983
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