
Appendix A. Solutions for different `p norms
in z-step

In problem (11), we set D(z) = ‖z‖22 to measure the
similarity between the legitimate image and the adversarial
example. But D(z) can also take other `p norms and the
solutions in z-step can be obtained with minor modifica-
tions. In the following, we show the z-step solutions3 for
D(z) = ‖z‖0, D(z) = ‖z‖1, and D(z) = ‖z‖1 + β

2 ‖z‖
2
2,

derived from proximal operators which are applicable and
well-suited to problems of substantial recent interest involv-
ing large or high-dimensional datasets.

A.1. Solutions for `0 norm

If D(z) = ‖z‖0, the solution to problem (11) can be
obtained as follows,

[zk+1]i =

{
min{1− [x0]i , ε} if ci > min{1− [x0]i , ε}
max{− [x0]i ,−ε} if ci < max{− [x0]i ,−ε}
ci otherwise,

(28)

where

ci =

{
ai if a2i >

2γ
ρ

0 otherwise
(29)

A.2. Solutions for `1 norm

If D(z) = ‖z‖1, the solution to problem (11) can be
obtained as below,

[zk+1]i =



min{1− [x0]i , ε} if (ai − γ
ρ
)+ − (−ai − γ

ρ
)+

> min{1− [x0]i , ε}
max{− [x0]i ,−ε} if (ai − γ

ρ
)+ − (−ai − γ

ρ
)+

< max{− [x0]i ,−ε}
(ai − γ

ρ
)+

−(−ai − γ
ρ
)+ otherwise,

(30)

where (x)+ = x if x ≥ 0 and 0 otherwise.

A.3. Solutions for combination of `1 and `2 norm

If D(z) = ‖z‖1 + β
2 ‖z‖

2
2, which is also know as elas-

tic net regularization, the solution to problem (11) can be

3We do not investigate the case of `∞ norm since the constraint
‖z‖∞ ≤ ε on the `∞ norm is already taken into consideration.

obtained through,

[zk+1]i =



min{1− [x0]i , ε} if 1

1+ γβ
ρ

((ai − γ
ρ
)+

−(−ai − γ
ρ
)+)

> min{1− [x0]i , ε}
max{− [x0]i ,−ε} if 1

1+ γβ
ρ

((ai − γ
ρ
)+

−(−ai − γ
ρ
)+)

< max{− [x0]i ,−ε}
1

1+ γβ
ρ

((ai − γ
ρ
)+

−(−ai − γ
ρ
)+) otherwise,

(31)

Appendix B. Derivation for maximizing EI

EI can be transformed as follows,

EI(δ)
l′=

l(δ)−µ
σ= El′

[
(l+ − l′σ − µ)I

(
l′ ≤ l+ − µ

σ

)]
= (l+ − µ)Φ

(
l+ − µ
σ

)
− σEl′

[
l′I
(
l′ ≤ l+ − µ

σ

)]

= (l+ − µ)Φ

(
l+ − µ
σ

)
− σ

∫ l+−µ
σ

−∞
l′φ(l′)dl′

= (l+ − µ)Φ

(
l+ − µ
σ

)
+ σφ

(
l+ − µ
σ

)
, (32)

Appendix C. BO-ZO-ADMM

In BO-ZO-ADMM, BO is used to obtain a query-efficient
attack solution (at early ADMM iterations) for initializing
the ZO method, which can further minimize the adversarial
distortion (at later ADMM iterations). Additional experi-
ments showed that when reaching the same `2 distortion
as ZO-ADMM, BO-ZO-ADMM requires 380 queries on
MNIST and 320 queries on CIFAR-10, outperforming 493
and 421 queries in Table 1.

Appendix D. Comparison with AutoZoom and
Boundary method

For the comparison with AutoZoom [39], we report the
averaged number of queries for attacking 500images at the
same `2 distortion level for MNIST, CIFAR-10,and Ima-
geNet in Table A1. As we can see, the proposed ZO-ADMM
method is more query-efficient, while it is worth noting
that AutoZOOM produces adversarial perturbation in low-
dimensional latent space,and thus saves more computation
cost.

Table A1. Comparison to AutoZOOM in attack success rate (ASR) and query #.

MNIST CIFAR-10 ImageNet
ASR # of Query ASR # of Query ASR # of Query

AutoZoom 100% 1821 99.2% 1639 98.3% 43547
ZO-ADMM 100% 562 99% 492 99% 16390



In Table A2, we show the comparison of ZO-ADMM
method with the Query-limited [18] and Boundary methods
[5] in terms of query number and `p norms on ImageNet.

Table A2. Experimental results on ImageNet

Settings Methods ASR `1 `2 `∞ Query #
Score-
based

Query-limited [18] 98% 1251 4.8 0.049 3.4× 105

ZO-ADMM 97% 785 3.5 0.039 1.6× 105

Decision-
based

Boundary [20] 85% 1120 3.99 0.045 2.2× 106

ZO-ADMM 93% 962 3.92 0.042 1.5× 106

Appendix E. Convergence of the ZO-ADMM
attack

Figure A1 shows the convergence of the ZO-ADMM
attack v.s. query number or ADMM iteration number. Figure
A2 shows the convergence comparison of the ZO-ADMM
method and the Boundary method.
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Figure A1. Convergence of the ZO-ADMM attack.

Figure A2. `2 distortion of decision-based attack vs queries on ImageNet.

Appendix F. Examples for the decision-based
ZO-ADMM attack

In the following, we provide more adversarial examples
generated by the proposed ZO-ADMM decision-based black-
box attack.
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Figure A3. Adversarial examples generated by the proposed
decision-based black-box attack with ZO-ADMM on MNIST and
CIFAR-10.
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Figure A4. Adversarial examples on ImageNet. The original images
are on the top row and their corresponding adversarial examples
are shown on the bottom row with target labels.


