Appendix A. Solutions for different /, norms
in z-step

In problem (11), we set D(z) = ||z||3 to measure the
similarity between the legitimate image and the adversarial
example. But D(z) can also take other ¢, norms and the
solutions in z-step can be obtained with minor modifica-
tions. In the following, we show the z-step solutionsE] for
D(2) = ||zllo. D(2) = 2], and D(z) = ||=I|, + £[=I3,
derived from proximal operators which are applicable and
well-suited to problems of substantial recent interest involv-
ing large or high-dimensional datasets.

A.1. Solutions for ¢, norm

If D(z) = ||z||o, the solution to problem (11) can be
obtained as follows,

if ¢; > min{1 — [xo), , €}
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A.2. Solutions for ¢; norm

If D(z) = ||z
obtained as below,

1, the solution to problem (11) can be
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where (z) = z if 2 > 0 and 0 otherwise.

A.3. Solutions for combination of ¢/, and /> norm

If D(z) = ||z]1 + §||z||§, which is also know as elas-
tic net regularization, the solution to problem (11) can be

3We do not investigate the case of /oo norm since the constraint
[[z]|loo < €on the oo norm is already taken into consideration.

obtained through,
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Appendix B. Derivation for maximizing EI
EI can be transformed as follows,
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Appendix C. BO-ZO-ADMM

In BO-ZO-ADMM, BO is used to obtain a query-efficient
attack solution (at early ADMM iterations) for initializing
the ZO method, which can further minimize the adversarial
distortion (at later ADMM iterations). Additional experi-
ments showed that when reaching the same /5 distortion
as ZO-ADMM, BO-ZO-ADMM requires 380 queries on
MNIST and 320 queries on CIFAR-10, outperforming 493
and 421 queries in Table 1.

Appendix D. Comparison with AutoZoom and
Boundary method

For the comparison with AutoZoom [39], we report the
averaged number of queries for attacking 500images at the
same /o distortion level for MNIST, CIFAR-10,and Ima-
geNet in Table[AT] As we can see, the proposed ZO-ADMM
method is more query-efficient, while it is worth noting
that AutoZOOM produces adversarial perturbation in low-
dimensional latent space,and thus saves more computation
cost.

Table Al. Comparison to AutoZOOM in attack success rate (ASR) and query #.

MNIST CIFAR-10 ImageNet
ASR | # of Query ASR # of Query ASR # of Query
AutoZoom | 100% 1821 99.2% 1639 98.3% 43547
Z0-ADMM | 100% 562 99% 492 99% 16390




In Table [A2] we show the comparison of ZO-ADMM
method with the Query-limited [18]] and Boundary methods
[S] in terms of query number and £, norms on ImageNet.

Table A2. Experimental results on ImageNet

Settings Methods ASR 0y /2 loo Query #
Score- | Query-limited [18] | 98% | 1251 | 4.8 | 0.049 | 3.4 x 10°
based Z0O-ADMM 97% | 785 | 3.5 | 0.039 | 1.6 x 10°

Decision- | Boundary [20] 85% | 1120 | 3.99 | 0.045 | 2.2 x 10°
based Z0-ADMM 93% | 962 | 3.92 | 0.042 | 1.5 x 10°

Appendix E. Convergence of the ZO-ADMM
attack

Figure [AT] shows the convergence of the ZO-ADMM
attack v.s. query number or ADMM iteration number. Figure
[A2] shows the convergence comparison of the ZO-ADMM
method and the Boundary method.
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Figure A1. Convergence of the ZO-ADMM attack.
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Figure A2. ¢ distortion of decision-based attack vs queries on ImageNet.

Appendix F. Examples for the decision-based
Z0O-ADMM attack

10°

In the following, we provide more adversarial examples
generated by the proposed ZO-ADMM decision-based black-
box attack.
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Figure A3. Adversarial examples generated by the proposed
decision-based black-box attack with ZO-ADMM on MNIST and
CIFAR-10.
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are on the top row and their corresponding adversarial examples
are shown on the bottom row with target labels.



