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Abstract—A central problem of surveillance is to monitor
multiple targets moving in a large-scale, obstacle-ridden envi-
ronment with occlusions. This paper presents a novel principled
Partially Observable Markov Decision Process-based approach
to coordinating and controlling a network of active cameras for
tracking and observing multiple mobile targets at high resolution
in such surveillance environments. Our proposed approach is
capable of (a) maintaining a belief over the targets’ states (i.e.,
locations, directions, and velocities) to track them, even when
they may not be observed directly by the cameras at all times,
(b) coordinating the cameras’ actions to simultaneously improve
the belief over the targets’ states and maximize the expected
number of targets observed with a guaranteed resolution, and (c)
exploiting the inherent structure of our surveillance problem to
improve its scalability (i.e., linear time) in the number of targets
to be observed. Quantitative comparisons with state-of-the-art
multi-camera coordination and control techniques show that our
approach can achieve higher surveillance quality in real time.
The practical feasibility of our approach is also demonstrated
using real AXIS 214 PTZ cameras.

I. INTRODUCTION

Monitoring, tracking, and observing multiple mobile targets
in a large-scale, obstacle-ridden environment (e.g., airport
terminals, railway stations, bus depots, shopping malls, etc.)
is a central problem of surveillance. It is often necessary to
acquire high-resolution videos/images of these targets. Tradi-
tionally, such high-quality surveillance is achieved by placing
a large number of static cameras to completely cover the
large environment. This is impractical in terms of equipment,
installation, and maintenance costs. Recent works ([6], [9],
[14]) have employed a heterogeneous network of wide-view
static camera(s) to detect and track the targets within the
environment at low resolution and some active pan/tilt/zoom
(PTZ) cameras to be directed and focused on these targets to
observe them at high resolution. Such surveillance systems
face two serious practical limitations: (a) The obstacles in
the environment (e.g., physical structures like walls, pillars,
and barriers) are likely to occlude the fields of view (fov)
of the static cameras and hence they cannot detect or track
the targets that reside within these occluded regions. Since
the surveillance system is not informed of these targets, the
active cameras may not be directed to observe them; and (b)
when the targets move further away from the low-resolution
static cameras, their measured locations become less accurate
regardless of the calibration method. The vision algorithms to

detect and recognize the targets also grow less reliable.

More importantly, the above limitations raise a practical
implication affecting real-world multi-camera surveillance in
general: The exact locations of the targets may not be observed
directly by (or fully observable to) the cameras at all times.
Such an environment is said to be partially observable [5].
Instead of introducing additional static cameras to resolve
this issue of partial observability, we propose an alternative
that maintains a probabilistic belief over the targets’ possible
locations, directions, and velocities in the environment. Our
proposed alternative offers a practical advantage over ([6],
[9], [14]) by eliminating the dependence on wide-fov static
cameras to track the targets’ locations and enabling the active
PTZ cameras to perform dual roles of tracking the targets as
well as observing them with high resolution. Hence, we will
focus on using (though not limited ourselves to) only active
PTZ cameras in this paper.

This paper presents a novel principled decision-theoretic
approach to coordinating and controlling a network of active
cameras for tracking and observing multiple mobile targets at
high resolution in uncertain, partially observable surveillance
environments. Our proposed approach stems from framing the
surveillance problem formally using a rich class of decision
making under uncertainty models called the Partially Observ-
able Markov Decision Process (POMDP) (Section III). Specif-
ically, it overcomes the above limitations by (a) modeling a
belief over the targets’ states (i.e., locations, directions, and
velocities) and updating the belief in a Bayesian paradigm
(Section III-D) based on probabilistic models of the targets’
motion (Section III-B) and the active cameras’ observations
(Section III-C); (b) coordinating the active cameras’ actions
to simultaneously improve the belief over the targets’ states
and maximize the expected number of targets observed with
a guaranteed pre-defined resolution (Sections III-E and IV);
and (c) exploiting the inherent structure of our surveillance
problem to improve its scalability (i.e., linear time) in the
number of targets to be observed (Section IV). Our POMDP-
based approach is empirically evaluated in simulations over
various realistic surveillance environments (Section V-A) and
with real AXIS 214 PTZ cameras to demonstrate its practical
feasibility (Section V-B).
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II. RELATED WORKS

As mentioned earlier, existing multi-camera coordination
and control techniques have to operate in a fully observable
surveillance environment where the locations, directions, and
velocities of all the targets can be directly observed/estimated
by either using additional low-resolution static cameras and
sensors ([2], [6], [9], [14], [15]) or configuring one or more
active cameras to zoom out to their wide view ([4], [11],
[12], [13]). They use these targets’ information to predict
their trajectories in order to schedule, coordinate, and control
the network of active cameras to focus on and observe these
targets at high resolution.

The major drawbacks of these techniques are: (a) They
cannot be deployed in real-world surveillance environments
with occlusions. In this case, they cannot observe the targets
that reside in the occluded regions, hence limiting the active
cameras’ full surveillance capability. In contrast, our approach
does not assume that all targets can be fully observed at every
time instance, and hence models a belief of the targets’ states
to keep track of them when they are not observed by any of
the cameras; (b) since the resolution of the wide-view static
cameras is low, they often produce inaccurate locations of the
targets. This in turn induces errors in targets’ directions and
velocities which consequently affect the prediction capability
of existing surveillance systems. On the other hand, our
approach uses only active cameras to observe the targets
at high resolution, thus allowing location errors to be kept
minimal; and (c) many existing techniques have serious issues
of scalability in the number of targets to be observed. Our
approach extends our previous work [9] to achieve scalability
in partially observable surveillance environments.

III. SYSTEM OVERVIEW AND PROBLEM FORMULATION
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Fig. 1. POMDP controller for coordinating active cameras to perform high-
quality surveillance in a partially observable environment.

A POMDP controller models the interaction between the
active cameras and the partially observable surveillance en-
vironment. In particular, it is responsible for coordinating
the cameras’ actions to achieve a high-level surveillance goal
which can be defined formally using a real-valued objective

function and, in the context of this paper, is to maximize
the number of targets observed with a guaranteed resolution
(Section III-E). By calibrating the active cameras, they can de-
termine the locations of the targets observed in their fov, which
are communicated to the controller. The targets are assumed
to be non-evasive and hence their motion cannot be controlled
or influenced by the cameras. The targets’ correspondences
across multiple cameras are resolved by distinct features like
color and texture.

Formally, a POMDP controller is defined as a tuple (S, A,
Z , Tf , Of , R) consisting of
• a set S of joint states of active cameras and targets in the

surveillance environment (Section III-A);
• a set A of joint actions of active cameras (Section III-A);
• a set Z of joint observations of the targets taken by the

cameras (Section III-A);
• a transition function Tf : S × A× S → [0, 1] denoting the

probability P (S′|S,A) of going from the current joint state
S ∈ S to the next joint state S′ ∈ S using the joint action
A ∈ A (Section III-B);

• an observation function Of : S → [0, 1] denoting the prob-
ability P (Z|S) of observing the joint observation Z ∈ Z
given the joint state S ∈ S (Section III-C); and

• a real-valued objective/reward function R : S → R repre-
senting a high-level surveillance goal (Section III-E).

At any given time, the exact state of the environment is not
fully observable to the POMDP controller. Instead, it maintains
a belief B over the set S of all possible states (Section III-D),
that is, B(S) is the probability that the environment is in the
state S ∈ S such that

∑
S∈S B(S) = 1. As shown in Fig. 1, at

every time step, the POMDP controller issues an action A ∈
A and makes an observation Z ∈ Z from the environment.
Based on the action A and observation Z, the prior belief B is
updated by Bayes’ rule to the posterior belief B′ as follows:

B′(S′) = η P (Z|S′)
∑
S∈S

P (S′|S,A)B(S) (1)

where η , 1/P (Z|B,A) is a normalizing constant. A policy
π for the POMDP controller is defined as a mapping from
each belief B to an action A (Section IV). Solving a POMDP
involves choosing the optimal policy π∗ that maximizes the
expected reward for any given belief B:

π∗(B) = argmax
A∈A

∑
Z′∈Z

R(B′)P (Z ′|B,A) .

When the number of targets and active cameras increases, the
state space and hence the belief space of the POMDP grow
exponentially (Section III-A). Therefore, computing the opti-
mal policy incurs exponential time. Fortunately, by exploiting
the structure of our surveillance problem (Sections III-B and
III-C), the optimal policy for a given belief B can be computed
efficiently (Section IV).

A. States, Actions, and Observations

A joint state S ∈ S of the POMDP controller is defined as
a pair of joint states T ∈ T m of m targets and C ∈ Cn of



n active cameras where T and C denote sets of all possible
states of each target and active camera, respectively. That is,
S , (T,C) and S = T m×Cn. Let T , (t1, t2, . . . , tm) ∈ T m
and C , (c1, c2, . . . , cn) ∈ Cn where tk ∈ T and ci ∈ C
denote the corresponding states of target k and camera i. Let
tk , (tlk , tdk , tvk) ∈ Tl×Td×Tv where tlk , tdk , and tvk denote
target k’s location, direction, and velocity, respectively. That
is, T = Tl × Td × Tv .

The state space C of an active camera is a finite set of
discrete pan/tilt/zoom positions. Let fov(ci) ⊂ Tl be a subset
of target locations lying within the fov of camera i in its state
ci. The joint fov of all cameras in joint state C is defined
as fov(C) =

⋃n
i=1 fov(ci). The depth of fov of each active

camera is limited such that (a) imageries of the targets detected
within its fov satisfy a pre-defined resolution, and (b) the
observed locations of the targets detected within its fov are
of minimal location error. This is done by adjusting the zoom
parameter of each camera based on its position.

The joint actions of the POMDP controller are PTZ com-
mands that move the corresponding cameras to their specified
states. Let a joint action of the n cameras be denoted by
A , (a1, a2, . . . , an) ∈ A where ai denotes the PTZ
command of camera i.

Let Ż , Tl ∪ {φ} denote a set of all possible observations
of a target comprising the set Tl of all possible locations of the
target in the environment and a null observation φ when the
target is not observed by any of the cameras. Let an observa-
tion of target k be denoted by zk ∈ Ż and a joint observation
of the m targets be denoted by Z , (z1, z2, . . . , zm) ∈ Żm.
That is, Z = Żm.

B. Transition Model Tf

By exploiting the following structural assumptions in the
state transition dynamics of the surveillance environment:
• camera i’s next state c′i is conditionally independent of the

other n− 1 cameras’ states and actions and the m targets’
states given its current state ci and action ai for i = 1, . . . , n
and
• target k’s next state t′k is conditionally independent of the
n cameras’ states and actions (i.e., target’s motion is not
affected by the cameras’ states and actions) and the other
m−1 targets’ states (i.e., every target moves independently)
given its current state tk for k = 1, . . . ,m,

the transition model Tf can be factored into transition models
of individual targets and active cameras, hence significantly
reducing the time incurred to compute the optimal policy π∗

for a given belief B (Section IV). Furthermore, since the
modern active cameras are able to move to their specified
positions accurately [1], it is practical to assume the transition
model of each individual camera to be deterministic and
consequently represented by a function τ that moves camera i
from its current state ci to its next state τ(ci, ai) by the action
ai. Then, the transition model of the POMDP controller can
be simplified to

P (S′|S,A) =
m∏
k=1

P (t′k|tk)
n∏
i=1

δτ(ci,ai)(c
′
i) (2)

where δx(x
′) is a Kronecker delta function of value 1 if

x′ = x, and 0 otherwise. Details on the derivation of (2) are
reported in [9]. The state transition of target k from tk to t′k
includes stochastic transitions of its location from tlk to t′lk ,
its direction from tdk to t′dk , and its velocity from tvk to t′vk .
So, the transition probability of target k can be factored into
transition probabilities of its location, direction, and velocity:

P (t′k|tk) = P (t′lk |tlk , t
′
dk
, t′vk)P (t

′
dk
|tdk)P (t′vk |tvk) .

The transition probabilities P (t′dk |tdk) and P (t′vk |tvk) of the
target’s direction and velocity are, respectively, modeled as
Gaussian distributions N (µd, σd) and N (µv, σv) with the
means µd and µv being the current direction and velocity
of the target, and σd and σv being the variance parameters
which are learned from a dataset of the targets’ trajectories in
the environment. The transition probability P (t′lk |tlk , t

′
dk
, t′vk)

of the target’s next location is constructed using the general
velocity-direction motion model, as described in [9].

C. Observation Model Of
Similar to the factorization of the transition model Tf , the

observation model Of can also be factored into observation
models of individual targets using the following structural
assumption: The observed location zk ∈ Ż of target k is
conditionally independent of the observed and true states of
the other m − 1 targets and its true direction tdk ∈ Td and
velocity tvk ∈ Tv given its true location tlk ∈ Tl and the joint
state C ∈ Cn of the n active cameras for k = 1, . . . ,m. As
a result, the time incurred to compute the optimal policy π∗

for a given belief B can be significantly reduced (Section IV).
Then, the observation model of the POMDP controller can be
simplified to

P (Z|S) =
m∏
k=1

P (zk|tlk , C) . (3)

The derivation of (3) is reported in Appendix A. The observa-
tion probability P (zk|tlk , C) of target k depends on whether
the target lies within the joint fov of the active cameras. When
the target lies within the cameras’ joint fov corresponding to
their joint state C (i.e., zk 6= φ), the observation model of
target k becomes deterministic:

P (zk|tlk , C) =
{

1 if zk = tlk ∧ tlk ∈ fov(C),
0 otherwise.

On the other hand, when target k does not lie within the joint
fov of the active cameras corresponding to their joint state C,
the observation probability of target k is uniformly distributed
over the locations not covered by the joint fov (i.e., fov(C)):

P (zk = φ|tlk , C) =


1

|fov(C)|
if tlk /∈ fov(C),

0 otherwise.



D. Bayesian Belief Update

By making use of independence assumptions similar to that
in the transition model (Section III-B), a belief B can be
factored into beliefs of individual targets and cameras:

B(S) = P ((T,C)) = P (T )P (C)

=

m∏
k=1

P (tk)

n∏
i=1

P (ci) =

m∏
k=1

bk(tk)

n∏
i=1

δĉi(ci)
(4)

where bk denotes a belief over the set T of all possible states
of target k (i.e., bk(tk) is the probability that target k is in
state tk) and ĉi is the current state of camera i that, unlike
a target’s state, is fully observable to the POMDP controller
since its position can be directly read from its port. Hence, the
probability P (ci) of a state ci of camera i can be represented
by a Kronecker delta δĉi(ci) and the last equality in (4)
follows.

The POMDP controller issues a joint action A to move each
camera i from current state ĉi to next state ĉ′i, receives an
observation zk of each target k, and then updates the prior
belief B to the posterior belief B′ using Bayes’ rule (1).
Similar to the factorization of the prior belief B above, the
posterior belief B′ can also be factored into posterior beliefs
of individual targets and cameras:

B′(S′) =

m∏
k=1

b′k(t
′
k)

n∏
i=1

δĉ′i(c
′
i) (5)

where the posterior belief b′k of target k is defined as

b′k(t
′
k) , ηkP (zk|t′lk , C

′)
∑
tk∈T

P (t′k|tk)bk(tk) , (6)

C ′ , (c′1, . . . , c
′
n), and ηk , 1/P (zk|bk, C ′) is a normalizing

constant. The derivation of (5) is reported in Appendix B.

E. Objective/Reward Function R

The goal of the surveillance system is to maximize the
number of targets observed with a guaranteed resolution. This
can be achieved by defining a reward function that measures
the total number of targets lying within the joint fov of the
active cameras corresponding to their joint state C:

R(S) = R((T,C)) ,
m∑
k=1

R̃(tk, C) (7)

where

R̃(tk, C) ,

{
1 if tlk ∈ fov(C),
0 otherwise.

Since the exact locations of the targets may not be fully
observable to the cameras at all times, the POMDP controller
has to track the joint belief B of the targets and consider the
expected reward with respect to this belief instead:

R(B) ,
∑
S∈S

R(S)B(S) =

m∑
k=1

R̃(bk, Ĉ) (8)

where Ĉ , (ĉ1, . . . , ĉn) and

R̃(bk, C) ,
∑
tk∈T

R̃(tk, C)bk(tk) . (9)

The derivation of (8) is reported in Appendix C.

IV. POLICY COMPUTATION

Recall that a policy π for the POMDP controller is a
mapping from each belief B to a joint action A ∈ A of the n
cameras. At every time step, the POMDP controller determines
the optimal policy π∗ for the belief B such that the expected
number of observed targets in the next time step is maximized.
Since the observations of the m targets taken by the cameras
in the next time step are not known to the POMDP controller,
it has to consider the expected reward with respect to these
future observations. Then, the optimal policy π∗ for a given
belief B becomes

π∗(B) = argmax
A∈A

V (B,A) (10)

where

V (B,A) =
∑
Z∈Z

R(B′)P (Z|B,A) . (11)

Computing the policy π∗ (10) for a given belief B incurs
O(|A||Ż|m|T |) time which is exponential in the number m of
targets. Fortunately, by exploiting simplified transition and ob-
servation models due to conditional independence assumptions
(i.e., (2) and (3)), this computational cost can be significantly
reduced. In particular, it is derived in Appendix D that the
value function V (B,A) of m targets can be simplified to
comprise a sum of value function Ṽ (bk, C

′) of individual
target k for k = 1, . . . ,m:

V (B,A) =

m∑
k=1

Ṽ (bk, (τ(ĉ1, a1), . . . , τ(ĉn, an))) (12)

where

Ṽ (bk, C
′) ,

∑
zk∈fov(C′)

∑
t′k∈T

R̃(t′k, C
′)b̂′k(t

′
k) (13)

and b̂′k is the unnormalized belief of target k (i.e., b̂′k(t
′
k) =

b′k(t
′
k)/ηk). Using (12) and (13), we obtain the following

result:

Theorem 1: If (2) and (3) hold, then computing policy π∗

(10) for a given belief B incurs O(|A||Ż||T |m) time.

Computing the value function Ṽ (bk, C
′) (13) for a single

target k incurs O(|Ż||T |) time. For m targets, the value
function V (B,A) (12) therefore incurs O(|Ż||T |m) time.
Finally, computing the optimal policy π∗ (10) for a given belief
B incurs O(|A||Ż||T |m) time which is linear in number m
of targets.
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Fig. 2. Setups of simulated surveillance environments: (a) Hall (|Tl| = 20 × 10 target locations), (b) corridor (|Tl| = 40 × 5 target locations), and (c)
junction (|Tl| = 168 target locations) with its corresponding real-world map shown in (d).

V. EXPERIMENTS AND DISCUSSION

This section evaluates the performance of our proposed
POMDP controller in simulations over various realistic
surveillance environments using Player/Stage simulator [3]
and with real AXIS 214 PTZ cameras to show its practi-
cal feasibility in real-world surveillance. Our POMDP-based
approach (denoted by P in Fig. 3) that uses only active
PTZ cameras is compared against the following state-of-the-
art multi-camera coordination and control techniques under
partially observable surveillance environments:
• MDP with only PTZ cameras (MP ): This approach uses

a Markov Decision Process (MDP) controller [9] to coor-
dinate and control the active cameras. There is no static
camera to directly observe the targets’ locations. Hence,
they are observed only from the active cameras’ fov;

• MDP with static and PTZ cameras (MSP ): This approach
uses the MDP controller [9] to coordinate and control
the active cameras that are supported by wide-view static
cameras. A Gaussian noise is added to the location of each
target observed by the static camera such that the Gaussian
variance increases with greater distance of the target from
the static camera;

• Systematic Approach (Sys): The active cameras are panned
systematically to each of its states in a round robin fashion
for every time step; and

• Static Approach (Stat): The active cameras are fixed at a
particular state such that they observe the maximum area of
the environment.

The performance metric used to evaluate the above approaches
is given by

PercentObs =
100

τMtot

τ∑
i=1

M i
obs

where τ (i.e., set to 100 in simulations) is the total number of
time steps taken in our experiments, M i

obs is the total number
of targets observed by the active cameras at a given time
step i, and Mtot is the total number of targets present in the
environment. That is, the PercentObs metric averages the
percentage of targets being observed by the active cameras
over the entire duration of τ time steps.

A. Simulated Experiments

Fig. 2 shows three different setups of simulated surveillance
environments: (a) hall, (b) corridor, and (c) junction. The
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Fig. 3. Graphs of PercentObs vs. number m of targets with n = 4 active
cameras for the (a) corridor, (b) hall and (c) junction setups.

junction setup simulates a surveillance environment within
our university campus which consists of obstacles (black
shades in Fig. 2c) like buildings and walls. In order to
introduce more occlusions in the environment, we have added
a virtual pillar in the center of the junction setup (Fig. 2c).
The active cameras are simulated in Player/Stage simulator
by configuring the states of the cameras across various pan
angles, as discussed in Section III-A. There are n = 4
active cameras with |C| = 3 states each. The targets’ trajec-
tories are generated in the simulator based on the velocity-
direction motion model (Section III-B) which resembles real
human motion in a surveillance environment. Every target
can move in one of the 8 possible discretized directions
Td = {0 ◦, 45 ◦, . . . ,−90 ◦,−45 ◦} with an assumed velocity
of 1.5 cells per time step. The transition model, observation
model, and reward function for a single target are computed
and stored offline for the above setups.

Fig. 3 shows the comparison of performance of different
approaches for up to m = 20 targets for all three setups. It
can be observed that our POMDP controller outperforms the
other evaluated approaches in all three setups. The detailed
observations from the experiments are as follows:

Our POMDP controller performs better than the MP ap-
proach because (a) when the targets leave the fov of any of
the cameras and enter an occluded region, the active cameras
in the MP approach have no idea where the targets will be
moving to in the next few time steps, and (b) when the targets
enter the fov of any of the active cameras from an occluded
region, the directions of the targets are wrongly interpreted by
the MDP controller. This is a serious limitation of the MP
approach, i.e., there is no way of knowing the direction of
the targets when they are in an occluded region. In contrast,
the Bayesian belief update process in our POMDP controller
helps to trace the locations and directions of the targets, even



TABLE I
PERFORMANCE FOR REAL CAMERA EXPERIMENTS.

No. of targets m 1 2 3 4 5
PercentObs 98.2 96.6 93.3 91.5 87

when they are not observed in any of the cameras. Hence, the
cameras are controlled based on the belief of the targets.

Our POMDP controller performs better than the MSP
approach because when the static cameras observe the targets
that are far away, they obtain noisy locations of the targets.
This in turn induces the errors in the direction and velocity of
the targets. Hence, when the noisy targets’ information is used
in the MDP controller, it predicts the expected locations of the
targets poorly, which consequently affects the performance of
the MSP approach. In contrast, for our POMDP-based ap-
proach, the targets’ locations are observed by high-resolution
active cameras whose calibration error is bounded by limiting
the depth of its fov (Section III-A). Since the observations (i.e.,
locations of the targets) for POMDP are more accurate than in
the MSP approach, the predictions of the targets’ locations
and directions through the Bayesian belief update process are
also more accurate.

Our POMDP controller performs much better than the Sys
and Stat baseline approaches because, for our approach, the
active cameras are controlled based on the targets’ predicted
motion and observations taken by the active cameras. But, for
the Sys approach, the cameras are panned without accounting
for the targets’ information such as locations and direction
while, for the Stat approach, every camera is fixed in one of
the states.

To summarize, our POMDP-based approach performs better
than the MP approach due to its ability to keep track of the
targets’ locations and directions through its Bayesian belief
update process. It outperforms the MSP approach because the
observations (i.e., target’s location) taken by the active cameras
in our POMDP controller are more accurate as compared to the
noisy observations taken by the static cameras in the MSP
approach. Lastly, the Sys and Stat approaches suffer from
performance degradation because the cameras are controlled
independently of the targets’ information.

B. Real Camera Experiments

The feasibility of our POMDP controller is tested using real
AXIS 214 PTZ cameras to monitor Lego robots (targets) over
the environment of size |Tl| = 10 × 8 grid cells. We have
n = 3 PTZ cameras, each of which has |C| = 3 states. These
cameras are calibrated in each of its state and the depth of
the fov of these cameras are determined empirically for each
of them. The Lego robots are programmed to move based
on the velocity-direction motion model. Table I shows the
performance of our approach in real camera experiments. Due
to space limitation, we showcase our detailed results of real
camera experiments in a demo video1.

The limitations of our POMDP-based approach are as
follows: (a) it scales well only in number of targets and needs
improvement in scalability in the number of cameras; and (b) it

1http://www.comp.nus.edu.sg/∼lowkh/camera.html

works well only if the underlying computer vision algorithms
for target detection and recognition perform accurately. For
our future work, we would like to extend this work by scaling
to a large number of cameras and also accounting for the
uncertainties arising from the underlying vision algorithms.
We would also like to deploy active cameras along with a
team of robots ([7], [8]) for indoor surveillance.

VI. CONCLUSION

This paper describes a novel POMDP-based approach to
coordinating and controlling a network of active cameras for
maximizing the number of targets observed with a guaranteed
resolution in an uncertain, partially observable surveillance
environment. Specifically, our approach helps to eliminate the
dependency on wide-view static cameras for tracking the tar-
gets’ locations and simultaneously performs the tracking and
observation of the targets at high resolution. We have exploited
the conditional independence property in the targets’ motion
and observation for our surveillance problem in order to reduce
the exponential policy computation time to linear time in the
number of targets. The experimental evaluation shows that our
proposed POMDP controller performs better than the state-of-
the-art approaches and is feasible and practical to operate in
real-world environments.
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APPENDIX

A. Observation model factorization

P (Z|S)
= P (Z|T,C)
= P (z1, z2, . . . , zm|t1, t2, . . . , tm, C)

=

m∏
k=1

P (zk|tk, C)

=

m∏
k=1

P (zk|tlk , C) .

The last two equalities are due to the conditional independence
assumption in the observation model (Section III-C).

B. Posterior belief decomposition

B′(S′)

= η P (Z|S′)
∑
S∈S

P (S′|S,A)B(S)

= η

m∏
k=1

P (zk|t′lk , C
′)
∑
T∈Tm

∑
C∈Cn

m∏
k=1

P (t′k|tk)

n∏
i=1

δτ(ci,ai)(c
′
i)

m∏
k=1

bk(tk)

n∏
i=1

δĉi(ci)

= η

m∏
k=1

P (zk|t′lk , C
′)

( ∑
T∈Tm

m∏
k=1

P (t′k|tk)
m∏
k=1

bk(tk)

)
( ∑
C∈Cn

n∏
i=1

δτ(ci,ai)(c
′
i)

n∏
i=1

δĉi(ci)

)

= η

m∏
k=1

P (zk|t′lk , C
′)

m∏
k=1

∑
tk∈T

P (t′k|tk)bk(tk)

n∏
i=1

δτ(ĉi,ai)(c
′
i)

=
∑
C′∈Cn

m∏
k=1

ηk

n∏
i=1

δĉ′i(c
′
i)

m∏
k=1

P (zk|t′lk , C
′)
∑
tk∈T

P (t′k|tk)bk(tk)
n∏
i=1

δĉ′i(c
′
i)

=

m∏
k=1

ηkP (zk|t′lk , C
′)
∑
tk∈T

P (t′k|tk)bk(tk)
n∏
i=1

δĉ′i(c
′
i)

=

m∏
k=1

b′k(t
′
k)

n∏
i=1

δĉ′i(c
′
i) .

The first equality is due to (1). The second equality follows
from (2), (3), and (4). The fifth equality follows from η =∑
C′∈Cn

m∏
k=1

ηk

n∏
i=1

δĉ′i(c
′
i) (Section E). The last equality is due

to (6).

C. Reward function decomposition

R(B)

=
∑
S∈S

R(S)B(S)

=
∑

(T,C)∈S

R((T,C))B((T,C))

=
∑
C∈Cn

∑
T∈T m

m∑
k=1

R̃(tk, C)

m∏
k=1

bk(tk)

n∏
i=1

δĉi(ci)

=

m∑
k=1

∑
tk∈T

R̃(tk, Ĉ)bk(tk)
∑

T−k∈T m−1

∏
j 6=k

bj(tj)

=

m∑
k=1

∑
tk∈T

R̃(tk, Ĉ)bk(tk)

=

m∑
k=1

(∑
tk∈T

R̃(tk, Ĉ)bk(tk)

)

=

m∑
k=1

R̃(bk, Ĉ)

where T−k = (t1, . . . , tk−1, tk+1, . . . , tm). The third equality
is due to (4) and (7). The fifth equality follows from our
independence assumption similar to that in (4) and the law
of total probability:∑

T−k∈T m−1

∏
j 6=k

bj(tj) =
∑

T−k∈T m−1

P (T−k) = 1 .

D. Value function decomposition

V (B,A)

=
∑
Z∈Z

R(B′)P (Z|B,A)

=
∑
Z∈Z

m∑
k=1

R̃(b′k, Ĉ
′)

m∏
j=1

P (zj |bj , Ĉ ′)

=

m∑
k=1

∑
Z∈Z

R̃(b′k, Ĉ
′)

m∏
j=1

P (zj |bj , Ĉ ′)

=

m∑
k=1

∑
zk∈Ż

R̃(b′k, Ĉ
′)P (zk|bk, Ĉ ′)

∑
Z−k∈Żm−1

∏
j 6=k

P (zj |bj , Ĉ ′)

=

m∑
k=1

∑
zk∈fov(Ĉ′)

R̃(b′k, Ĉ
′)P (zk|bk, Ĉ ′)

=

m∑
k=1

∑
zk∈fov(Ĉ′)

∑
t′k∈T

R̃(t′k, Ĉ
′)b′k(t

′
k)P (zk|bk, Ĉ ′)

=

m∑
k=1

∑
zk∈fov(Ĉ′)

∑
t′k∈T

R̃(t′k, Ĉ
′)b̂′k(t

′
k)

=

m∑
k=1

Ṽ (bk, Ĉ
′) =

m∑
k=1

Ṽ (bk, (τ(ĉ1, a1), . . . , τ(ĉn, an)))



where Ĉ ′ , (ĉ′1, . . . , ĉ
′
n) and Z−k =

(z1, . . . , zk−1, zk+1, . . . , zm). The first equality is due
to (11). The second equality is obtained using (8) and

η−1 =
∑
C′∈Cn

m∏
k=1

η−1k

n∏
i=1

δĉ′i(c
′
i) (Section E). The fifth

equality follows from P (Z−k|B−k, A) =
∏
j 6=k

P (zj |bj , Ĉ ′)

where B−k(S) =
∏
j 6=k

bj(tj)

n∏
i=1

δĉi(ci) and then the law of

total probability:
∑

Z−k∈Żm−1

∏
j 6=k

P (zj |bj , Ĉ ′) = 1. Also, note

that when zk /∈ fov(Ĉ ′), R̃(b′k, Ĉ ′) = 0. The sixth equality
is due to (9). Since the normalizing constant of b′k(t

′
k) is

1/P (zk|bk, Ĉ ′), the seventh equality follows.

E. Derivation of η =
∑
C′∈Cn

m∏
k=1

ηk

n∏
i=1

δĉ′i(c
′
i)

η−1 = P (Z|B,A)
=
∑
S′∈S

P (Z|S′)P (S′|B,A)

=
∑
S′∈S

P (Z|S′)
∑
S∈S

P (S′|S,A)P (S|B)

=
∑
S′∈S

P (Z|S′)
∑
S∈S

P (S′|S,A)B(S)

=
∑
C′∈Cn

∑
T ′∈Tm

m∏
k=1

P (zk|t′lk , C
′)

∑
C∈Cn

∑
T∈Tm

(
m∏
k=1

P (t′k|tk)
n∏
i=1

δτ(ci,ai)(c
′
i)

)(
m∏
k=1

bk(tk)

n∏
i=1

δĉi(ci)

)

=
∑
C′∈Cn

∑
T ′∈Tm

m∏
k=1

P (zk|t′lk , C
′)

( ∑
T∈Tm

m∏
k=1

P (t′k|tk)
m∏
k=1

bk(tk)

)
( ∑
C∈Cn

n∏
i=1

δτ(ci,ai)(c
′
i)

n∏
i=1

δĉi(ci)

)

=
∑
C′∈Cn

∑
T ′∈Tm

m∏
k=1

P (zk|t′lk , C
′)

m∏
k=1

∑
tk∈T

P (t′k|tk)bk(tk)

n∏
i=1

δτ(ĉi,ai)(c
′
i)

=
∑
C′∈Cn

∑
T ′∈Tm

m∏
k=1

P (zk|t′lk , C
′)

m∏
k=1

∑
tk∈T

P (t′k|tk)bk(tk)

n∏
i=1

δĉ′i(c
′
i)

=
∑
C′∈Cn

m∏
k=1

∑
t′k∈T

P (zk|t′lk , C
′)
∑
tk∈T

P (t′k|tk)bk(tk)
n∏
i=1

δĉ′i(c
′
i)

=
∑
C′∈Cn

m∏
k=1

η−1k

n∏
i=1

δĉ′i(c
′
i)

where η−1k =
∑
t′k∈T

P (zk|t′lk , C
′)
∑
tk∈T

P (t′k|tk)bk(tk) =

P (zk|bk, C ′). The fourth equality follows from (2), (3), and

(4). It follows that η =
∑
C′∈Cn

m∏
k=1

ηk

n∏
i=1

δĉ′i(c
′
i).
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