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ABSTRACT
There is a growing interest in applying deep learning (DL) to health-
care, driven by the availability of data with multiple feature chan-
nels in rich-data environments (e.g., intensive care units). However,
in many other practical situations, we can only access data with
much fewer feature channels in a poor-data environments (e.g.,
at home), which often results in predictive models with poor per-
formance. How can we boost the performance of models learned
from such poor-data environment by leveraging knowledge ex-
tracted from existing models trained using rich data in a related
environment? To address this question, we develop a knowledge
infusion framework named CHEER that can succinctly summarize
such rich model into transferable representations, which can be
incorporated into the poor model to improve its performance. The
infused model is analyzed theoretically and evaluated empirically
on several datasets. Our empirical results showed that CHEER out-
performed baselines by 5.60% to 46.80% in terms of the macro-F1
score on multiple physiological datasets.
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1 INTRODUCTION
In rich-data environments with strong observation capabilities,
data often come with rich representations that encompass multiple
channels of features. For example, multiple leads of Electrocardio-
gram (ECG) signals in hospital used for diagnosing heart diseases
are measured in intensive care units (ICU), of which each lead is
considered a feature channel. The availability of such rich-data
environment has thus sparked strong interest in applying deep
learning (DL) for predictive health analytics as DL models built
on data with multi-channel features have demonstrated promising
results in healthcare [40]. However, in many practical scenarios,
such rich data are often private and not accessible due to privacy
concern. Thus, we often have to develop DL models on lower qual-
ity data comprising fewer feature channels, which were collected
from poor-data environments with limited observation capabilities
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(e.g., home monitoring devices which provide only a single chan-
nel of feature). Inevitably, the performance of state-of-the-art DL
models, which are fueled by the abundance and richness of data,
becomesmuch less impressive in such poor-data environments [33].

To alleviate this issue, we hypothesize that learning patterns con-
solidated by DL models trained in one environment often encode
information that can be transferred to related environments. For ex-
ample, a heart disease detection model trained on rich-data from 12
ECG channels in a hospital will likely carry pertinent information
that can help improve a similar model trained on poor-data from a
single ECG channel collected by a wearable device due to the cor-
relation between their data. Motivated by this intuition, we further
postulate that given access to a prior model trained on rich-data,
the performance of a DL model built on a related poor-data can be
improved if we can extract transferable information from the rich
model and infuse them into the poor model. This is related to deep
transfer learning and knowledge distillation but with a new setup
that has not been addressed before, as elaborated in Section 2 below.

In this work, we propose a knowledge infusion framework, named
CHEER, to address the aforementioned challenges. In particular,
CHEER aims to effectively transfer domain-invariant knowledge
consolidated from a rich model with high-quality data demand to a
poor model with low data demand and model complexity, which is
more suitable for deployment in poor-data settings. We also demon-
strate empirically that CHEER helps bridge the performance gap
between DL models applied in rich- and poor-data settings. Specifi-
cally, we have made the following key contributions:

1. We develop a transferable representation that summarizes the
rich model and then infuses the summarized knowledge effectively
into the poor model (Section 3.2). The representation can be applied
to a wide range of existing DL models.

2. We perform theoretical analysis to demonstrate the efficiency of
knowledge infusion mechanism of CHEER. Our theoretical results
show that under practical learning configurations and mild assump-
tions, the poor model’s prediction will agree with that of the rich
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model with high probability (Section 4).

3. Finally, we also conduct extensive empirical studies to demon-
strate the efficiency of CHEER on several healthcare datasets. Our
results show that CHEER outperformed the second best approach
(knowledge distillation) and the baseline without knowledge infu-
sion by 5.60% and 46.80%, respectively, in terms of macro-F1 score
and demonstrated more robust performance (Section 5).

2 RELATEDWORKS
Deep Transfer Learning: Most existing deep transfer learning
methods transfer knowledge across domains while assuming the
target and source models have equivalent modeling and/or data
representation capacities. For example, deep domain adaptation
have focused mainly on learning domain-invariant representations
between very specific domains (e.g., image data) on [4, 6, 9, 11, 16,
22, 32, 42, 46]. Furthermore, this can only be achieved by training
both models jointly on source and target domain data.

More recently, another type of deep transfer learning [45] has been
developed to transfer only the attention mechanism [3] from com-
plex to shallow neural network to boost its performance. Both
source and target models, however, need to be jointly trained on
the same dataset. In our setting, since source and target datasets are
not available at the same time and that the target model often has
to adopt representations with significantly less modeling capacity
to be compatible with the poor-data domain with weak observation
capabilities.

Knowledge Distillation: Knowledge distillation [15] or mimic
learning [1] aim to transfer the predictive power from a high-
capacity but expensive DLmodel to a simpler model such as shallow
neural networks for ease of deployment [23, 30, 34, 44]. This can
usually be achieved via training simple models on soft labels learned
from high-capacity models, which, however, assume that both mod-
els operate on the same domain and have access to the same data or
at least datasets with similar qualities. In our setting, we only have
access to low-quality data with poor feature representation, and
an additional set of limited paired data that include both rich and
poor representations (e.g., high-quality ICU data and lower-quality
health-monitoring information from personal devices) of the same
object.

Domain Adaptation: There also exists another body of non-deep
learning transfer paradigms that were often referred to as domain
adaption. This however often include methods that not only assume
access domain-specific [24, 29, 36–38] and/or model-specific knowl-
edge of the domains being adapted [17, 20, 25, 27, 28, 35, 41, 43],
but are also not applicable to deep learning models [10, 39] with
arbitrary architecture as addressed in our work.

In particular, our method does not impose any specific assumption
on the data domain and the deep learning model of interest. We
recognize that our method is only demonstrated on deep model
(with arbitrary architecture) in this research but our formulation
can be straightforwardly extended to non-deep model as well. We

Table 1: Notations used in CHEER.

Notation Definition
Hr ≜ {(xri ,y

r
i )}

n
i=1; T (y | x

r ) rich data; rich model
Hp ≜ {(xpi ,y

p
i )}

m
i=1; S

(
y | xp

)
poor data; poor model

Ho ≜ {(xri , x
p
i ,yi )}

k
i=1 paired data

Qr ≜ [q1r . . .q
lr
r ] ∈ Rd×lr domain-specific features

Ar (xr ) ≜ [a(1)r (xr ) . . . a
(d )
r (xr )] feature scoring functions

Or ≜ Or (Q⊤r Ar (xr )) feature aggregation component

omit such detail in the current manuscript to keep the focus on
deep models which are of greater interest in healthcare context due
to their expressive representation in modeling multi-channel data.

3 THE CHEERMETHOD
3.1 Data and Problem Definition
Rich and Poor Datasets. Let Hr ≜ {(xri ,y

r
i )}

n
i=1 and Hp ≜

{(xpi ,y
p
i )}

m
i=1 denote the rich and poor datasets, respectively. The

subscript i indexes the i-th data point (e.g., the i-th patient in
healthcare applications), which contains input feature vector xri
or xpi and output target yri or ypi of the rich or poor datasets. The
rich and poor input features xri ∈ R

r and xpi ∈ R
p are r - and p-

dimensional vectors with p ≪ r , respectively. The output targets,
yri and ypi ∈ {1 . . . c}, are categorical variables. The input features
of these datasets (i.e., xri and xpi ) are non-overlapping as they are
assumed to be collected from different channels of data (i.e., differ-
ent data modalities). In the remaining of this paper, we will use
data channel and data modality interchangeably.

For example, the rich data can be the physiological data from ICU
(e.g., vital signs, continuous blood pressure and electrocardiogra-
phy) or temporal event sequences such as electronic health records
with discrete medical codes, while the poor data are collected from
personal wearable devices. The target can be the mortality status
of those patients, onset of heart diseases and etc. Note that these
raw data are not necessarily plain feature vectors. They can be
arbitrary rich features such as time series, images and text data. We
will present one detailed implementation using time series data in
Section 3.3.

Input Features. We (implicitly) assume that the raw data of in-
terest comprises (says, p or r ) multiple sensory channels, each of
which can be represented by or embedded1 into a particular feature
signal (i.e., one feature per channel). This results in an embed-
ded feature vector of size p or r (per data point), respectively. In
a different practice, a single channel may be encoded by multiple
latent features and our method will still be applicable. In this paper,
however, we will assume one embedded feature per channel
to remain close to the standard setting of our healthcare scenario,
which is detailed below.

1We embed these channel jointly rather than separately to capture their latent
correlation.
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Paired Dataset. To leverage both rich and poor datasets, we need
a small amount of paired data to learn the relationships between
them, which is denoted as Ho ≜ {(xri , x

p
i ,yi )}

k
i=1. Note that the

paired dataset contains both rich and poor input features, i.e. xri
and xpi , of the same subjects (hence, sharing the same target yi ).

Concretely, this means a concatenated input xoi = [x
r
i , x

p
i ] of the

paired dataset has o = p + r features where the first r features are
collected from r rich channels (with highly accurate observation
capability) while the remaining p features are collected from p poor
channels (with significantly more noisy observations). We note that
our method and analysis also apply to settings where xpi ⊆ xri . In
such cases, xoi = xri and o = r (though the number of data point i
for which xri is accessible as paired data is much less than the num-
ber of those with accessible xpi ). To avoid confusion, however, we
will proceed with the implicit assumption that there is no feature
overlapping between poor and rich datasets in the remaining of
this paper.

For example, the paired dataset may comprise of rich data from ICU
(xpi ) and poor data from wearable sensors (xri ), which are extracted
from the same patient i . The paired dataset often contains much
fewer data points (i.e., patients) than the rich and poor datasets
themselves, and cannot be used alone to train a prediction model
with high quality.

Problem Definition. Given (1) a poor datasetHp collected from a
particular patient cohort of interest, (2) a paired datasetHo collected
from a limited sample of patients, and (3) a rich model T(y |xr )
which were pre-trained on private (rich) data of the same patient
cohort, we are interested in learning a model S(y |xp ) using both
Hp ,Ho andT(y |xr ), which can perform better than a vanilla model
D(y |xp ) generated using onlyHp orHo .

Challenges. This requires the ability to transfer the learned knowl-
edge from T(y |xr ) to improve the prediction quality of S(y |xp ).
This is however a highly non-trivial task because (a) T(y |xr ) only
generates meaningful prediction if we can provide input from rich
data channels, (b) its training data is private and cannot be accessed
to enable knowledge distillation and/or domain adaptation, and
(c) the paired data is limited and cannot be used alone to build an
accurate prediction model.

Solution Sketch. Combining these sources of information coher-
ently to generate a useful prediction model on the patient cohort of
interest is therefore a challenging task which has not been inves-
tigated before. To address this challenge, the idea is to align both
rich and poor models using a transferable representation described
in Section 3.2. This representation in turn helps infuse knowledge
from the rich model into the poor model, thus improving its perfor-
mance. The overall structure of CHEER is shown in Figure 1. The
notations are summarized in Table 1.

3.2 Learning Transferable Rich Model
In our knowledge infusion task, the rich model is assumed to be
trained in advance using the rich datasetHr ≜ {(xri ,y

r
i )}

n
i=1. The

Figure 1: CHEER: (a) a rich model was first built using rich
multi-modal or multi-channel data; (b) the behaviors of
rich model are then infused into the poor model using
paired data (i.e., behavior infusion); and (c) the poor model
is trained to fit both the rich model’s predictions on paired
data and its poor dataset (i.e., target infusion).

rich dataset is, however, not accessible and we only have access to
the richmodel. The knowledge infusion task aims to consolidate the
knowledge acquired by the rich model and infuse it with a simpler
model (i.e., the poor model).

Transferable Representation. To characterize a DL model, we
first describe the building blocks and then discuss how they would
interact to generate the final prediction scores. In particular, let
Qr (xr ), Ar (xr ) and Or denote the building blocks, namely Feature
Extraction, Feature Scoring and Feature Aggregation, respectively.
Intuitively, the Feature Extraction first transforms raw input feature
xr into a vector of high-level features Qr (xr ), whose importance
are then scored by the Feature Scoring function Ar (xr ). The high-
level features Qr (xr ) are combined first via a linear transformation
Qr (xr )⊤Ar (xr ) that focuses the model’s attention on important fea-
tures. The results are translated into a vector of final predictive prob-
abilities via the Feature Aggregation function Or (Qr (xr )⊤Ar (xr )),
which implements a non-linear transformation. Mathematically, the
above workflow can be succinctly characterized using the following
conditional probability distributions:

T
(
y | xr

)
≜ Pr

(
y | Q⊤r

(
xr

)
Ar

(
xr

)
;Or

)
. (1)

We will describe these building blocks in more details next.

Feature Extraction.Dealing with complex input data such as time
series, images and text, it is common to derive more effective fea-
tures instead of directly using the raw input xr . The extracted fea-
tures are denoted as Qr (xr ) ≜ [q1r (xr ) . . .q

lr
r (xr )] ∈ Rd×lr where

qir (xr ) ∈ Rd is a d-dimensional feature vector extracted by the i-th
feature extractor from the raw input xr . Each feature extractor is
applied to a separate segment of the time series input (defined later
in Section 3.3). To avoid cluttering the notations, we shortenQr (xr )
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as Qr .

Feature Scoring. Since the extracted features are of various im-
portance to each subject, they are combined via weights specific to
each subject. More formally, the extracted features Qr (xr ) of the
rich model are combined via Q⊤r (xr )Ar (xr ) using subject-specific
weight vector Ar (xr ) ≜ [a(1)r (xr ) . . . a

(d )
r (xr )] ∈ Rd .

Essentially, each weight component a(i)r (xr ) maps from the raw
input feature xr to the important score of its ith extracted feature.
For each dimension i , a(i)r (xr ) ≜ a

(i)
r (xr ;ω

(i)
r ) parameterized by a

set of parametersω(i)r , which are learned using the rich dataset.

Feature Aggregation. The feature aggregation implements a non-
linear transformation Or (e.g., a feed-forward layer) that maps the
combined features into final predictive scores. The input to this
component is the linearly combined feature Qr (xr )⊤Ar (xr ) and
the output is a vector of logistic inputs,

r
(
xr

)
≜ [r1 . . . rc ] = Or

(
Qr

(
xr

)⊤ Ar
(
xr

) )
, (2)

which is subsequently passed through the softmax function to
compute the predictive probability for each candidate label,

T
(
y = j |xri

)
≜ exp

(
r j

) / ( c∑
κ=1

exp (rκ )
)
. (3)

3.3 A DNN Implementation of Rich Model
This section describes an instantiation of the aforementioned ab-
stract building blocks using a popular DNN architecture with self-
attention mechanism [21] for modeling multivariate time series [7]:

Raw Features. Raw data from rich data environment often consist
of multivariate time series such as physiological signals collected
from hospital or temporal event sequences such as electronic health
records (EHR) with discrete medical codes. In the following, we
consider the raw feature input xri as continuous monitoring data
(e.g., blood pressure measures) for illustration purpose.

Feature Extraction. To handle such continuous time series, we ex-
tract a set of domain-specific features using CNN and RNN models.
More specifically, we splits the raw time series xri into lr non-
overlapping segments of equal length.

That is, xri ≜
(
sri,m

)
wherem = 1 . . . lr and sri,m ∈ R

Dr such that
Dr × lr = r with r denotes the number of features of the rich data.
Then, we apply stacked 1-D convolutional neural networks (CNNr )
with mean pooling (Pr ) on each segment, i.e.

hri,m ≜ Pr

(
CNNr

(
sri,m

))
(4)

where hri,m ∈ R
kr , and kr denotes the number of filters of the CNN

components of the rich model. After that, we place a recurrent
neural network (RNNr ) across the output segments of the previous
CNN and Pooling layers:

qri,m ≜ RNNr

(
qri,m−1, h

r
i,m

)
∈ Rd , (5)

The output segments of the RNN layer are then concatenated to
generate the feature matrix,

Q(i)r ≜
[
qri,1 . . . q

r
i,lr

]
∈ Rd×lr , (6)

which correspond to our domain-specific feature extractorsQr (xri ) ≜
[q1r (xri ) . . .q

lr
r (xri )] where q

t
r (xri ) = qri,t ∈ R

d , as defined previ-
ously in our transferable representation (Section 3.2).

Feature Scoring. The concatenated features Q(i)r is then fed to the
self-attention component ATTr to generate a vector of importance
scores for the output components, i.e. a(i)r ≜ ATTr (Q(i)r ) ∈ Rd . For
more details on how to construct this component, see [2, 8, 14]
and [21]. The result corresponds to the feature scoring functions2

Ar (xri ) ≜ [a
(1)
r (xri ) . . . a

(d )
r (xri )] where a

(t )
r (xri ) = [a

(i)
r ]t ∈ R.

Feature Aggregation. The extracted features Q(i)r are combined
using the above feature scoring functions, which yields Q(i)

⊤
r a(i)r .

The combined features are subsequently passed through a linear
layer with densely connected hidden units (DENSEr ),

g(i)r ≜ DENSEr

(
Q(i)

⊤
r a(i)r ;wr

)
, (7)

where g(i)r ∈ Rc with c denotes the number of class labels and wr
denotes the parametric weights of the dense layers. Then, the output
of the dense layer is transformed into a probability distribution
over class labels via the following softmax activation functions
parameterized with softmax temperatures τr :

T
(
y = j |xri

)
≜ exp

( [
g(i)r

]
j
/τr

) / c∑
κ=1

exp
( [
g(i)r

]
κ
/τr

)
The entire process corresponds to the feature aggregation function
Or (Qr (xr )⊤Ar (xr )) parameterized by {wr ,τr }.

3.4 Knowledge Infusion for Poor Model
To infuse the above knowledge extracted from the rich model to
the poor model, we adopt the same transferable representation for
the poor model as follows:

S
(
y | xp

)
≜ Pr

(
y | Q⊤p

(
xp

)
Ap

(
xp

)
;Op

)
where Qp , Ap (xp ) ≜ [a(1)p (xp ;ω

(1)
p ) . . . a

(d )
p (xp ;ω

(d )
p )] ∈ Rd and

Op are the poor model’s domain-specific feature extractors, feature
scoring functions and feature aggregation functions, which are
similar in format to those of the rich model. Infusing knowledge
from the rich model to the poor model can then be boiled down
to matching these components between them. This process can be
decomposed into two steps:

Behavior Infusion. As mentioned above, each scoring function
a(i)p

(
xp ;ω(i)p

)
is defined by a weight vectorω(i)p . The collection of

these weight vectors thus defines the poor model’s learning behav-
iors (i.e., its feature scoring mechanism).

2We use the notation [a]t to denote the t -th component of vector a.
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Figure 2: The DNN Implementation of CHEER.

Given the input components {(xpt , xrt )}kt=1 of the subjects included
in the paired dataset Ho and the rich model’s scoring outputs
{a(i)r (xrt )}kt=1 at those subjects, we can construct an auxiliary dataset
Bi ≜ {(xpt ,a

(i)
r (xrt ))}kt=1 to learn the corresponding behaviorω(i)p

of the poor model so that its scoring mechanism is similar to that of
the rich model. That is, we want to learn a mapping from a poor data
point xp to the important score assigned to its ith latent feature by
the rich model. Formally, this can be cast as the optimization task
given by Eq. 8:

minimize
ω (i )p

Li
(
ω(i)p

)
≜

1
2

k∑
t=1

(
a
(i)
p

(
xpt ;ω

(i)
p

)
− a(i)r

(
xrt

) )2
+ λ∥ω(i)p ∥22 .

(8)

For example, if we parameterize a
(i)
p

(
xpt ;ω

(i)
p

)
= ω(i)

⊤

p xpt and
choose λ = 0, then Eq. 8 reduces to a linear regression task, which
can be solved analytically. Alternatively, by choosing λ = 1, Eq. 8
reduces to a maximum a posterior (MAP) inference task with nor-
mal prior imposed onω(i)p , which is also analytically solvable.

Incorporating more sophisticated, non-linear parameterization for
a
(i)
p

(
xpt ;ω

(i)
p

)
(e.g., deep neural network with varying structures)

is also possible but Eq. 8 can only be optimized approximately via
numerical methods (see Section 3.2). Eq. (8) can be solved via stan-
dard gradient descent. The complexity of deriving the solution thus
depends on the number of iteration τ and the cost of computing
the gradient ofω(i)p which depends on the parameterization of a(i)p
but is usually O(w) where w = maxi |ω(i)p |. As such, the cost of
computing the gradient of the objective function with respect to a
particular i is O(kw). As there are τ iterations, the cost of solving
for the optimalω(i)p is O(τkw). Lastly, since we are doing this for d
values of i , the total complexity would be O(τkwd).

Target Infusion.Given the poormodel’s learned behaviors {ω(i)p }di=1
(which were fitted to those of the rich model via solving Eq. 8), we

now want to optimize the poor model’s feature aggregation Op and
feature extraction Qp components so that its predictions will (a)
fit those of the rich model on paired data Ho ; and also (b) fit the
ground truth {ypt }mt=1 provided by the poor dataHp . Formally, this
can be achieved by solving the following optimization task:

min
Op,Qp

Lp ≜
1
k

k∑
t=1

c∑
y=1

(
T

(
yt |xrt ;Or ,Qr

)
− S

(
y |xpt ;Op ,Qp

))2
+

1
m

m∑
t=1

(
1 − S

(
y
p
t |x

p
t ;Op ,Qp

))2
(9)

To understand the above, note that the first term tries to fit poor
model S to rich model T in the context of the paired dataset
Ho ≜ {(xpt , xrt ,yt )}kt=1 while the second term tries to adjust the
poor model’s fitted behavior and target in a local context of its poor
data Hp ≜ {(xpt ,y

p
t )}mt=1. This allows the second term to act as a

filter that downplays distilled patterns which are irrelevant in the
poor data context. Again, Eq. 9 can be solved depending on how
we parameterize the aforementioned components (Op ,Qp ).

For example, Op can be set as a linear feed-forward layer with
densely connected hidden units, which are activated by a softmax
function. Again, Eq. (9) could be solved via standard gradient de-
scent. The cost of computing the gradient would depend linearly on
the total no. np of neurons in the parameterization ofOp andQp for
the poor model. In particular, the gradient computation complexity
for one iteration is O(np (mpc + kc2)). For τ iteration, the total cost
would be O(τnp (mpc + kc2)).

Both steps of behavior infusion and target infusion are suc-
cinctly summarized in Algorithm 1 below.
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Algorithm 1 CHEER (Hp , T(y |xr ),Ho )

1: Input: rich model T(y |xr ), poor dataHp and paired dataHo
2: Infuse rich model’s behavior viaHo
3: i ← 1
4: while i ≤ d do
5: ω(i)p ← argminLi (ω(i)p ) via (8);
6: a

(i)
p (xp ) ← a

(i)
p (xp ;ω

(i)
p )

7: i ← i + 1
8: end while
9: Ap ← [a(1)p (xp ;ω

(1)
p ) . . . a

(d )
p (xp ;ω

(d )
p )]

10: Infuse rich model’s target via (Ho ,Hp ) and Ap
11: (Qp ,Op ) ← argminLp via (9)
12: Output: poor model S(y |xp ) ← (Ap ,Qp ,Op )

4 THEORETICAL ANALYSIS
In this section, we provide theoretical analysis for CHEER. Our goal
is to show that under certain practical assumptions and with re-
spect to a random instance x = (xp , xr ) ∼ P(x) drawn from an
arbitrary data distribution P, the prediction yp ≜ argmaxS(y |xp )
of the resulting poor model will agree with that of the rich model,
yr ≜ argmaxT(y |xr ), with high probability, thus demonstrating
the accuracy of our knowledge infusion algorithm in Section 3.4.

High-Level Ideas. To achieve this, our strategy is to first bound
the expected target fitting loss (see Definition 2) on a random in-
stance x ≜ (xp , xr ) ∼ P(x) of the poor model with respect to its
optimized scoring function Ap , feature extraction Qp and feature
aggregation Op components via solving Eq. 8 and Eq. 9 in Sec-
tion 3.4 (see Lemma 1).

We can then characterize the sufficient condition on the target
fitting loss (see Definition 1) with respect to a particular instance
x ≜ (xp , xr ) for the poor model to agree with the rich model on their
predictions of xp and xr , respectively (see Lemma 2). The probabil-
ity that this sufficient condition happens can then be bounded in
terms of the bound on the expected target fitting loss in Lemma 1
(see Theorem 1), which in turn characterizes how likely the poor
model will agree with the rich model on the prediction of a random
data instance. To proceed, we put forward the following assump-
tions and definitions:

Definition 1. Let θp ≜ {Op ,Qp ,Ap } denote an arbitrary parame-
terization of the poor model. The particular target fitting loss of the
poor model with respect to a data instance x ≜ (xp , xr ) is

L̂x
(
θp

)
≜

c∑
y=1

(
T

(
y |xr

)
− S

(
y |xp

) )2
+

1
m

m∑
t=1

(
1 − S

(
y
p
t |x

p
t

) )2
, (10)

where c denotes the number of classes, T(y |xr ) and S(y |xp ) de-
notes the probability scores assigned to candidate class y by the
rich and poor models, respectively.

Definition 2. Let θp be defined as in Definition 1. The expected
target fitting loss of the poor model with respect to the parameteri-
zation θp is defined below,

L
(
θp

)
≜ Ex∼P(x)

[
L̂x

(
θp

) ]
, (11)

where the expectation is over the unknown data distribution P(x).

Definition 3. Let x = (xp , xr ) andy(x) ≜ argmaxcy=1 T(y |x
r ). The

robustness constant of the rich model is defined below,

ϕ ≜
1
2

min
(xp,xr )

(
T

(
y(x) | xr

)
− max
y,y(x)

T
(
y | xr

) )
, (12)

That is, if the probability scores of the model are being perturbed
additively within ϕ, its prediction outcome will not change.

Assumption 1. The paired data points xi = (xpi , x
r
i ) of Ho are

assumed to be distributed independently and identically from P(x).

Assumption 2. The hard-label predictions yp ≜ argmaxS(y |xp )
and yr ≜ argmaxT(y |xr ) of the poor and rich models are unique.

Given the above, we are now ready to state our first result:

Lemma 1. Let θ∗p and θ̂p denote the optimal parameterization of
the poor model that yields the minimum expected target fitting loss
(see Definition 2) and the optimal solution found by minimizing the
objective functions in Eq. 8 and Eq. 9, respectively. Let α ≜ L(θ∗p ),
δ ∈ (0, 1) and c denote the number of classes in our predictive task.
If k ≜ |Ho | ≥ ((c + 1)2/(2ϵ2)) log(2/δ ) then,

Pr
(
L

(
θ̂p

)
≤ α + 2ϵ

)
≥ 1 − δ . (13)

Proof.We first note that by definition in Eq. (10), for all x, L̂x(θ ) ≤
c + 1. Then, let us define the empirical target fitting loss as

L̂ (θ ) ≜
1
k

k∑
i=1
L̂x(i ) (θ ) , (14)

where {L̂x(i ) (θ )}ki=1 can be treated as identically and independently
distributed random variables in (0, c + 1). Then, by Definition 2, it
also follows that L(θ ) = E[L̂(θ )]. Thus, by Hoeffding inequality:

Pr
(���L(θ ) − L̂(θ )��� ≤ ϵ

)
≥ 1 − 2exp

(
− 2kϵ2

(c + 1)2

)
. (15)

Then, for an arbitrary δ ∈ (0, 1), setting δ ≤ exp(−2kϵ2/(c + 1)2)
and solving for k yields k ≥ ((c + 1)2/(2ϵ2)) log(2/δ ). Thus, for
k ≥ ((c +1)2/(2ϵ2)) log(2/δ ), with probability at least 1−δ , |L(θ )−
L̂(θ )| ≤ ϵ holds simultaneously for all θ . When that happens with
probability at least 1 − δ , we have:

L
(
θ̂p

)
≤ L̂

(
θ̂p

)
+ ϵ

≤ L̂
(
θ∗p

)
+ ϵ ≤ L

(
θ∗p

)
+ 2ϵ = α + 2ϵ . (16)

That is, Pr
(
L̂

(
θ̂p

)
≤ α + 2ϵ

)
≥ 1− δ , which completes our proof

for Lemma 1. Note that the above 2nd inequality follows from the
definition of θ̂p ≜ argminθ L̂(θp ), which implies L̂(θ̂p ) ≤ L̂(θ∗p ).

6



This result implies the expected target fitting loss L(θ̂p ) incurred
by our knowledge infusion algorithm in Section 3.4 can be made ar-
bitrarily close (with high confidence) to the optimal expected target
fitting loss α ≜ L(θ∗p ) with a sufficiently large paired datasetHo .

Lemma 2. Let x = (xp , xr ) and θ̂p as defined in Lemma 1. If
the corresponding particular target fitting loss (see Definition 1)
L̂x(θ̂p ) ≤ ϕ2, then both poor and rich models agree on their predic-
tions for xp and xr , respectively. That is, yp ≜ maxy S(y |xp ) and
yr ≜ maxy T(y |xr ) are the same.

Proof. Let yp and yr be defined as in the statement of Lemma 2.
We have:

S
(
yp | xp

)
≥ S

(
yr | xp

)
≥ T

(
yr | xr

)
− ϕ

≥ T
(
yp | xr

)
+ 2ϕ − ϕ

≥ S
(
yp | xp

)
+ 2ϕ − 2ϕ = S

(
yp | xp

)
. (17)

To understand Eq. (17), note that the first inequality follows from
the definition of yp . The second inequality follows from the fact
that L̂x(θ̂p ) ≤ ϕ2, which implies ∀y (S(y |xp )−T (y |xr ))2 ≤ ϕ2 and
hence, |S(yr |xp )−T (yr |xr )| ≤ ϕ or S(yr |xp ) ≥ T (yr |xr )−ϕ. The
third inequality follows from the definitions of ϕ (see Definition 3)
and yr . Finally, the last inequality follows from the definition of yp

and that L̂x(θ̂p ) ≤ ϕ2, which also impliesT(yp |xr ) ≥ S(yp |xp )−ϕ.

Eq. (17) thus implies S
(
yp |xp

)
≥ S

(
yr |xp

)
≥ S

(
yp |xp

)
and

hence, S
(
yp |xp

)
= S

(
yr |yp

)
. Since the hard-label prediction is

unique (see Assumption 3), this means yr = yp and hence, by
definitions of yr and yp , the poor and rich models yield the same
prediction. This completes our proof for Lemma 2.
Intuitively, Lemma 2 specifies the sufficient condition under which
the poor model will yield the same hard-label prediction on a partic-
ular data instance x as the rich model. Thus, if we know how likely
this sufficient condition will happen, we will also know how likely
the poor model will imitate the rich model successfully on a random
data instance. This intuition is the key result of our theoretical
analysis and is formalized below:

Theorem 1. Let δ ∈ (0, 1) and x = (xp , xr ) denote a random
instance drawn from P(x). Let k ≜ |Ho | denote the size of the
paired datasetHo , which were used to fit the learning behaviors
of the poor model to that of the rich model, and E denotes the
event that both models agree on their predictions of x. If k ≥
((c + 1)2/(2ϵ2)) log(2/δ ), then with probability at least 1 − δ ,

Pr (E) ≥ 1 − 1
ϕ2
(α + 2ϵ) . (18)

Proof. Since L̂x(θ̂p ) ≤ ϕ2 implies E, it follows that

Pr (E) ≥ Pr
(
L̂x

(
θ̂p

)
≤ ϕ2

)
. (19)

Then, by Markov inequality, we have

Pr
(
L̂x

(
θ̂p

)
> ϕ2

)
≤ϕ−2E

[
L̂x

(
θ̂p

)]
= ϕ−2L

(
θ̂p

)
. (20)

Subtracting both sides of Eq. (20) from a unit probability yields

Pr
(
L̂x

(
θ̂p

)
≤ ϕ2

)
≥ 1 − ϕ−2L

(
θ̂p

)
, (21)

where the last equality follows because E[L̂x(θ̂p )] = L(θ̂p ), which
follows immediately from Definitions 1-2 and Assumption 1. Thus,
plugging Eq. (21) into Eq. (19) yields

Pr (E) ≥ 1 − ϕ−2L
(
θ̂p

)
. (22)

Applying Lemma 2, we know that with probability 1 − δ , L
(
θ̂p

)
≤

α + 2ϵ . Thus, plugging this into Eq. (22) yields

Pr (E) ≥ 1 − ϕ−2 (α + 2ϵ) . (23)

That is, by union bound, with probability at least 1−δ −ϕ−2(α +2ϵ),
the poor model yields the same prediction as that of the rich model.
This completes our proof for Theorem 1.
This immediately implies E will happen with probability at least
1−δ−(1/ϕ2)(α+2ϵ). The chance for the poor model to yield the same
prediction as the richmodel on an arbitrary instance (i.e., knowledge
infusion succeeds) is therefore at least 1 − δ − (1/ϕ2)(α + 2ϵ).

5 EXPERIMENTS
5.1 Experimental Settings
Datasets.We use the following datasets in our evaluation.

A.MIMIC-III Critical Care Database (MIMIC-III) 3 is collected
from more than 58, 000 ICU patients at the Beth Israel Deaconess
Medical Center (BIDMC) from June 2001 to October 2012 [18]. We
collect a subset of 9, 488 patients who has one of the following (most
frequent) diseases in their main diagnosis: (1) acute myocardial in-
farction, (2) chronic ischemic heart disease, (3) heart failure, (4)
intracerebral hemorrhage, (5) specified procedures complications,
(6) lung diseases, (7) endocardium diseases, and (8) septicaemia. The
task is disease diagnosis classification (i.e., predicting which of 8
diseases the patient has) based on features collected from 6 data
channels: vital sign time series including Heart Rate (HR), Respira-
tory Rate (RR), Blood Pressure mean (BPm), Blood Pressure systolic
(BPs), Blood Pressure diastolic (BPd) and Blood Oxygen Saturation
(SpO2). We randomly divided the data into training (80%), valida-
tion (10%) and testing (10%) sets.

B. PTB Diagnostic ECG Database (PTBDB) 4 is a 15-channel
1000 Hz ECG time series including 12 conventional leads and 3
Frank leads [5, 12] collected from both healthy controls and cases
of heart diseases, which amounts to a total number of 549 records.
The given task is to classify ECG to one of the following categories:
(1) myocardial infarction, (2) healthy control, (3) heart failure, (4)
bundle branch block, (5) dysrhythmia, and (6) hypertrophy. We
down-sampled the data to 200 Hz and pre-processed it following the
"frame-by-frame" method [31] with sliding windows of 10-second
duration and 5-second stepping between adjacent windows.

C. NEDCTUHEEGArtifact Corpus (EEG) 5 is a 22-channel 500
Hz sensor time series collected from over 30,000 EEGs spanning
the years from 2002 to present [26]. The task is to classify 5 types
of EEG events including (1) eye movements (EYEM), (2) chewing
(CHEW), (3) shivering (SHIV), (4) electrode pop, electrode static,
3https://mimic.physionet.org/
4https://physionet.org/physiobank/database/ptbdb/
5https://www.isip.piconepress.com/projects/tuh_eeg/html/overview.shtml
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and lead artifacts (ELPP), and (5) muscle artifacts (MUSC). We ran-
domly divided the data into training (80%), validation (10%) and
testing (10%) sets by records.

The statistics of the above datasets, as well as the architectures of
the rich and poor models on each dataset are summarized in the
tables below.

Table 2: Data statistics.

MIMIC-III PTBDB EEG

# subjects 9,488 549 213
# classes 8 6 5
# features 6 15 22
Average length 48 108,596 13,007
Sample frequency 1 per hour 1,000 Hz 500 Hz

Table 3: The architecture of richmodel in MIMIC-III, which
includes a total of 51.6k parameters.

Layer Type Hyper-parameters Activation

1 Split n_seg=6
2 Convolution1D n_filter=64, kernel_size=4, stride=1 ReLU
3 Convolution1D n_filter=64, kernel_size=4, stride=1 ReLU
4 AveragePooling1D
5 LSTM hidden_units=64 ReLU
6 PositionAttention
7 Dense hidden_units=n_classes Linear
8 Softmax

Table 4: The architecture of the infused, poor model used by
CHEER, Direct, KD and AT for knowledge infusion in MIMIC-
III, which includes a total of 3.5k parameters.

Layer Type Hyper-parameters Activation

1 Split n_seg=6
2 Convolution1D n_filter=16, kernel_size=4, stride=1 ReLU
3 Convolution1D n_filter=16, kernel_size=4, stride=1 ReLU
4 AveragePooling1D
5 LSTM hidden_units=16 ReLU
6 PositionAttention
7 Dense hidden_units=n_classes Linear
8 Softmax

Baselines.We compare CHEER against the following baselines:

Direct: In all experiments, we train a neural network model param-
eterized with CHEER directly on the poor dataset without knowledge
infusion from the rich model. The resulting model can be used to
produce a lower bound of predictive performance on each dataset.

Knowledge Distilling (KD) [15]: KD transfers predictive power
from teacher to student models via soft labels produced by the
teacher model. In our experiments, all KD models have similar com-
plexity as the infused model generated by CHEER. The degree of

Table 5: The architecture of richmodel in PTBDB, which in-
cludes a total of 688.8k parameters.

Layer Type Hyper-parameters Activation

1 Split n_seg=10
2 Convolution1D n_filter=128, kernel_size=16, stride=2 ReLU
3 Convolution1D n_filter=128, kernel_size=16, stride=2 ReLU
4 Convolution1D n_filter=128, kernel_size=16, stride=2 ReLU
5 AveragePooling1D
6 LSTM hidden_units=128 ReLU
7 PositionAttention
8 Dense hidden_units=n_classes Linear
9 Softmax

Table 6: The architecture of the infused, poor model used by
CHEER, Direct, KD and AT for knowledge infusion in PTBDB,
which includes a total 45.0k parameters.

Layer Type Hyper-parameters Activation

1 Split n_seg=10
2 Convolution1D n_filter=32, kernel_size=16, stride=2 ReLU
3 Convolution1D n_filter=32, kernel_size=16, stride=2 ReLU
4 Convolution1D n_filter=32, kernel_size=16, stride=2 ReLU
5 AveragePooling1D
6 LSTM hidden_units=32 ReLU
7 PositionAttention
8 Dense hidden_units=n_classes Linear
9 Softmax

label softness (i.e., the temperature parameter of soft-max activa-
tion function) in KD is set to 5.

Table 7: The architecture of rich model in EEG, which in-
cludes a total of 417.4k parameters.

Layer Type Hyper-parameters Activation

1 Split n_seg=5
2 Convolution1D n_filter=128, kernel_size=8, stride=2 ReLU
3 Convolution1D n_filter=128, kernel_size=8, stride=2 ReLU
4 Convolution1D n_filter=128, kernel_size=8, stride=2 ReLU
5 AveragePooling1D
6 LSTM hidden_units=128 ReLU
7 PositionAttention
8 Dense hidden_units=n_classes Linear
9 Softmax

Table 8: The architecture of the infused, poor model used
by CHEER, Direct, KD and AT for knowledge infusion in EEG,
which includes a total of 51.6k parameters.

Layer Type Hyper-parameters Activation

1 Split n_seg=5
2 Convolution1D n_filter=32, kernel_size=8, stride=2 ReLU
3 Convolution1D n_filter=32, kernel_size=8, stride=2 ReLU
4 Convolution1D n_filter=32, kernel_size=8, stride=2 ReLU
5 AveragePooling1D
6 LSTM hidden_units=32 ReLU
7 PositionAttention
8 Dense hidden_units=n_classes Linear
9 Softmax
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Attention Transfer (AT) [45]: AT enhances shallow neural net-
works by leveraging attention mechanism [3] to learn a similar
attention behavior of a full-fledged deep neural network (DNN).
In our experiments, we first train a DNN with attention compo-
nent, which can be parameterized by CHEER. The trained attention
component of DNN is then transferred to that of a shallow neural
networks in poor-data environment via activation-based attention
transfer with L2-normalization.

HeterogeneousDomainAdaptation (HDA) [43]:MaximizeMean
Discrepancy (MMD) loss [13] has been successfully used in domain
adaptation such as [22]. However, one drawback is that these works
only consider homogeneous settings where the source and target
domains have the same feature space, or use the same architecture
of neural network. To mitigate this limitation, HDA [43] proposed
modification of soft MMD loss to handle with heterogeneity be-
tween source domain and target domain.

Performance Metrics. The tested methods’ prediction perfor-
mance was compared based on their corresponding areas under the
Precision-Recall (PR-AUC) and Receiver Operating Characteristic
curves (ROC-AUC) as well as the accuracy and F1 score , which
are often used in multi-class classification to evaluate the tested
method’s prediction quality. In particular, accuracy is measured
by the ratio between the number of correctly classified instances
and the total number of test instances. F1 score is the harmonic
average of precision (the proportion of true positive cases among
the predicted positive cases) and recall (the proportion of positive
cases whose are correctly identified), with threshold 0.5 to deter-
mine whether a predictive probability for being positive is large
enough (larger than threshold) to actually assign a positive label to
the case being considered or not.

Then, we use the average of F1 scores evaluated for each label
(i.e., macro-F1 score) to summarize the averaged predictive perfor-
mance of all tested methods across all classes. The ROC-AUC and
PR-AUC scores are computed based on predicted probabilities and
ground-truths directly. For ROC-AUC, it is the area under the curve
produced by points of true positive rate (TPR) and false positive
rate (FPR) at various threshold settings. Likewise, the PR-AUC score
is the area under the curve produced by points of (precision, recall)
at various threshold settings. In our experiments, we report the
average PR-AUC and ROC-AUC since all three tasks are multi-class
classification.

Training Details For each method, the reported results (mean per-
formance and its empirical standard deviation) are averaged over 20
independent runs. For each run, we randomly split the entire dataset
into training (80%), validation (10%) and test sets (10%). All models
are built using the training and validation sets and then, evaluated
using test set. We use Adam optimizer [19] to train each model,
with the default learning rate set to 0.001. The number of training
epoches for each model is set as 200 and an early stopping criterion
is invoked if the performance does not improve in 20 epoches. All
models are implemented in Keras with Tensorflow backend and
tested on a system equipped with 64GB RAM, 12 Intel Core i7-6850K
3.60GHz CPUs and Nvidia GeForce GTX 1080. For fair comparison,

we use the same model architecture and hyper-parameter setting
for Direct, KD, AT, HDA and CHEER. For rich dataset, we use the
entire amount of dataset with the entire set of data features. For
poor dataset, we vary the size of paired dataset and the number of
features to analyze the effect of knowledge infusion in different data
settings as shown in Section 4.3. The default maximum amount of
paired data is set to 50% of entire dataset, and the default number of
data features used in the poor dataset is set to be half of the entire
set of data features. In Section 4.2, to compare the tested methods’
knowledge infusion performance under different data settings, we
use the default settings for all models (including CHEER and other
baselines).

5.2 Performance Comparison
Results on MIMIC-III, PTBDB and EEG datasets are reported in
Table 9, Table 10 and Table 11, respectively. In this experiment, we
set the size of paired dataset to 50% of the size of the rich data, and
set the number of features used in poor-data environment to 3, 7,
11 for MIMIC-III, PTBDB and EEG, respectively. In all datasets, it
can be observed that the infused model generated by CHEER con-
sistently achieves the best predictive performance among those
of the tested methods, which demonstrates the advantage of our
knowledge infusion framework over existing transfer methods such
as KD and AT.

Notably, in terms of the macro-F1 scores, CHEER improves over KD,
AT, HDA and Direct by 5.60%, 23.95%, 31.84% and 46.80%, respec-
tively, on MIMIC-III dataset. The infused model generated by CHEER
also achieves 81.69% performance of the rich model on PTBDB in
terms of the macro-F1 score (i.e., 0.299/0.366, see Table 10) while
adopting an architecture that is 15.14 times smaller than the rich
model’s (see Tables 5 and 6). We have also performed a significance
test to validate the significance of our reported improvement of
CHEER over the baselines in Table 12.

Furthermore, it can also be observed that the performance variance
of the infused model generated by CHEER (as reflected in the re-
ported standard deviation) is the lowest among all tested methods’,
which suggests that CHEER’s knowledge infusion is more robust.
Our investigation in Section 5.3 further shows that this is the result
of CHEER being able to perform both target and behavior infusion.
This helps the infused model generated by CHEER achieved better
and more stable performance than those of KD, HDA and AT, which
either match the prediction target or reasoning behavior of the rich
and poor models (but not both). This consequently leads to their less
robust performance with wide fluctuation in different data settings,
as demonstrated next in Section 5.3.

Table 9: Performance comparison on MIMIC-III dataset.

ROC-AUC PR-AUC Accuracy Macro-F1

Direct 0.622±0.062 0.208±0.044 0.821±0.012 0.141±0.057
KD 0.686±0.043 0.257±0.029 0.833±0.012 0.196±0.049
AT 0.645±0.064 0.225±0.044 0.826±0.013 0.167±0.057
HDA 0.655±0.034 0.225±0.029 0.824±0.011 0.157±0.038
CHEER 0.697±0.024 0.266±0.023 0.835±0.010 0.207±0.030
Rich Model 0.759±0.014 0.341±0.024 0.852±0.007 0.295±0.027
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Figure 3: Graphs of achieved ROC-AUC scores on (a) MIMIC-III, (b) PTBDB and (c) EEG of the infused models generated by
Direct, KD, AT, HDA and CHEER with different sizes of the paired datasets. The X-axis shows the ratio between the size of the
paired dataset and that of the rich dataset.
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Figure 4: Graphs of achieved ROC-AUC scores on (a) MIMIC-III, (b) PTBDB and (c) EEG of the infused models generated by
Direct, KD, AT, HDA and CHEERwith different number of data channels (i.e., features) included in the poor dataset. Notice that
all method use the same set of selected features for each run.

Table 10: Performance comparison on PTBDB dataset.

ROC-AUC PR-AUC Accuracy Macro-F1

Direct 0.686±0.114 0.404±0.088 0.920±0.015 0.275±0.057
KD 0.714±0.096 0.439±0.093 0.925±0.016 0.295±0.043
AT 0.703±0.117 0.402±0.078 0.921±0.016 0.283±0.056
HDA 0.685±0.113 0.430±0.080 0.924±0.011 0.299±0.051
CHEER 0.724±0.103 0.441±0.080 0.927±0.017 0.299±0.052
Rich Model 0.732±0.110 0.483±0.101 0.930±0.017 0.366±0.071

Table 11: Performance comparison on EEG dataset.

ROC-AUC PR-AUC Accuracy Macro-F1

Direct 0.797±0.064 0.506±0.083 0.888±0.015 0.425±0.078
KD 0.772±0.083 0.512±0.082 0.888±0.021 0.445±0.097
AT 0.793±0.071 0.502±0.082 0.884±0.012 0.417±0.062
HDA 0.805±0.050 0.523±0.073 0.884±0.019 0.455±0.073
CHEER 0.808±0.066 0.535±0.061 0.895±0.016 0.460±0.076
Rich Model 0.854±0.069 0.657±0.077 0.922±0.014 0.595±0.070

Table 12: The p-values of corresponding t-tests (on one-tail)
for every two samples of ROC-AUC scores of CHEER and a
tested benchmark (i.e., Direct, KD, AT and HDA) on MIMIC-
III, PTBDB and EEG datasets, respectively. The correspond-
ing significance percentage (s) is provided in the parentheses
next to each reported p-value.

MIMIC-III PTBDB EEG

with Direct 0.0000 (s = 01%) 0.0154 (s = 05%) 0.1720 (s = 20%)
with KD 0.0450 (s = 05%) 0.1874 (s = 20%) 0.0124 (s = 05%)
with AT 0.0007 (s = 01%) 0.0421 (s = 05%) 0.1821 (s = 20%)
with HDA 0.0000 (s = 01%) 0.0741 (s = 10%) 0.4823 (s = 20%)

5.3 Analyzing Knowledge Infusion Effect in
Different Data Settings

To further analyze the advantages of CHEER’s knowledge infusion
over those of the existing works (e.g., KD and AT), we perform
additional experiments to examine how the variations in (1) sizes of
the paired dataset and (2) the number of features of the poor dataset
will affect the infused model’s performance. The results are shown
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in Fig. 3 and Fig. 4, respectively. In particular, Fig. 3 shows how the
ROC-AUC of the infused model generated by each tested method
varies when we increase the ratio between the size of the paired
dataset and that of the rich data. Fig. 4, on the other hand, shows
how the infused model’s ROC-AUC varies when we increase the
number of features of the poor dataset. In both settings, the reported
performance of all methods is averaged over 10 independent runs.

Varying Paired Data. Fig. 3 shows that (a) CHEER outperforms all
baselines with varying sizes of the paired data and (b) direct learn-
ing on poor data yields significantly worse performance across all
settings. Both of which are consistent with our observations earlier
on the superior knowledge infusion performance of CHEER. The
infused models generated by KD, HDA and AT both perform con-
sistently worse than that of CHEER by a substantial margin across
all datasets. Their performance also fluctuates over a much wider
range (especially on EEG data) than that of CHEERwhenwe vary the
size of the paired datasets. This shows that CHEER’s knowledge in-
fusion is more data efficient and robust under different data settings.

On another note, we also notice that when the amount of paired
data increases from 20% to 30% of the rich data, there is a per-
formance drop that happens to all tested methods with attention
transfer (i.e., CHEER and AT) on MIMIC-III but not on PTBDB and
EEG. This is, however, not surprising since unlike PTBDB and EEG,
MIMIC-III comprises of more heterogeneous types of signals and
its data distribution is also more unbalanced, which affects the
attention learning, and causes similar performance drop patterns
between methods with attention transfer such as CHEER and AT.

Varying The Number of Features. Fig. 4 shows how the pre-
diction performance of the infused models generated by tested
methods changes as we vary the number of features in poor data.
In particular, it can be observed that the performance of CHEER’s
infused model on all datasets increases steadily as we increase the
number of input features observed by the poor model, which is
expected.

On the other hand, it is perhaps surprising that as the number of
features increases, the performance of KD, HDA, AT and Direct
fluctuates more widely on PTBDB and EEG datasets, which is in
contrast to our observation of CHEER. This is, however, not unex-
pected since the informativeness of different features are different
and hence, to utilize and combine them effectively, we need an
accurate feature weighting/scoring mechanism. This is not possible
in the cases of Direct, KD, HDA and AT because (a) Direct com-
pletely lacks knowledge infusion from the rich model, (b) KD and
HDA only performs target transfer from the rich to poor model,
and ignores the weighting/scoring mechanism, and (c) AT only
transfers the scoring mechanism to the poor model (i.e., attention
transfer) but not the feature aggregation mechanism, which is also
necessary to combine the weighted features correctly. In contrast,
CHEER transfers both the weighting/scoring (via behavior infusion)
and feature aggregation (via target infusion) mechanisms, thus per-
forms more robustly and is able to produce steady gain (without
radical fluctuations) in term of performance when the number of
features increases. This supports our observations earlier regarding

Table 13: CHEER’s performance on MIMIC-III, PTBDB and
EEG with (left-column) K features with highest mutual in-
formation (MI) to the class label as features of the poor
dataset; and (right-column) K features with lowest mutual
information to the class label as features of the poor dataset.
K is set to 2 for MIMIC-III, 5 for PTBDB and 7 for EEG.

Dataset Highest MI Features Lowest MI Features

MIMIC-III 0.672 ± 0.044 0.657 ± 0.012
PTBDB 0.646 ± 0.133 0.639 ± 0.115
EEG 0.815 ± 0.064 0.807 ± 0.042

the lowest performance variance achieved by the infused model
of CHEER, which also suggests that CHEER’s knowledge infusion
scheme is more robust than those of KD, HDA and AT.

Finally, to demonstrate how the performance of CHEER varies with
different choices of feature sets for poor data, we computed the
mutual information between each feature and the class label, and
then ranked them in decreasing order. The performance of CHEER
on all datasets is then reported in two cases, which include (a) K
features with highest mutual information, and (b) K features with
lowest mutual information. In particular, the reported results (see
Table 13) show that a feature set with lowmutual information to the
class label will induce worse transfer performance and conversely,
a feature set (with the same number of features) with high mutual
information will likely improve the transfer performance.

To further inspect the effects of used modalities in CHEER, we also
computed the averaged entropy of each modality across all classes,
and ranked them in decreasing order for each dataset. Then, we
selected a small number of top-ranked, middle-ranked and bottom-
ranked features from the entire set of modalities. These are marked
as Top, Middle and Bottom respectively in Table 14.

The number of selected features for each rank is 2, 4 and 5 for
MIMIC-III, PTBDB and EEG, respectively. Finally, we report the
ROC-AUC scores achieved by the corresponding infused models
generated by CHEER for each of those feature settings in Table 14.
It can be observed from this table that the ROC-AUC of the infused
model degrades consistently across all datasets when we change
the features of poor data from those in Top to Middle and then to
Bottom. This verifies our statement earlier that the informativeness
of different data features are different.

Table 14: CHEER’s performance using different sets of data
features with different information quality (as measured by
their entropy scores).

MIMIC-III PTBDB EEG

Top 0.688 ± 0.010 0.710 ± 0.131 0.839 ± 0.044
Middle 0.676 ± 0.014 0.682 ± 0.132 0.788 ± 0.065
Bottom 0.664 ± 0.012 0.633 ± 0.130 0.758 ± 0.066
Rich 0.759 ± 0.014 0.732 ± 0.110 0.854 ± 0.069
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6 CONCLUSION
This paper develops a knowledge infusion framework (named
CHEER) that helps infuse knowledge acquired by a rich model trained
on feature-rich data with a poor model which only has access to
feature-poor data. The developed framework leverages a newmodel
representation to re-parameterize the rich model and consequently,
consolidate its learning behaviors into succinct summaries that can
be infused efficiently with the poor model to improve its perfor-
mance. To demonstrate the efficiency of CHEER, we evaluated CHEER
on multiple real-world datasets, which show very promising results.
We also develop a formal theoretical analysis to guarantee the per-
formance of CHEER under practical assumptions. Future extensions
of CHEER includes the following potential settings: incorporating
meta/contextual information as part of the features and/or learning
from data with missing labels.
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