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ABSTRACT
A key challenge in non-cooperative multi-agent systems is
that of developing efficient planning algorithms for intelli-
gent agents to perform effectively among boundedly ratio-
nal1, self-interested (i.e., non-cooperative) agents (e.g., hu-
mans). To address this challenge, we investigate how inten-
tion prediction can be efficiently exploited and made practi-
cal in planning, thereby leading to efficient intention-aware
planning frameworks capable of predicting the intentions of
other agents and acting optimally with respect to their pre-
dicted intentions.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Intelligent
agents, Multiagent systems

General Terms
Algorithms, Performance, Experimentation, Theory

Keywords
Planning (single and multi-agent), Modeling other agents
and self

1. INTRODUCTION
To date, existing planning frameworks for non-cooperative

multi-agent systems (MAS) can be generally classified into:
(a) game-theoretic frameworks rely on the well-established
solution concepts of classical game theory to characterize in-
teractions among self-interested agents; (b) decision-theoretic
frameworks extend single-agent decision-theoretic planning
framework (e.g., MDP, POMDP) by considering other agents
as a stochastic part of the environment. However, such
frameworks suffer from the following drawbacks: (a) the re-
strictive assumptions on other agents’ behaviors, as implied
by the solution concepts [3, 4]; (b) the failure in accounting
for agents’ deliberative and boundedly rational behaviors
that cannot be sufficiently modeled as stochastic noise in the
transition model. Alternatively, the interactive POMDP (I-
POMDP) framework [2] attempts to explicitly account for
the bounded rationality of self-interested agents by main-
taining an agent’s interactive beliefs over both the physi-

1Boundedly rational agents are subject to limited informa-
tion, cognition, and time while making decisions.

Appears in: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek (eds.),
4-8 June 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

cal states and the other agents’ beliefs. As a result, solv-
ing I-POMDP requires solving an exponential number of
POMDPs [2], which are prohibitively expensive. To resolve
the above issues, we propose practical and efficient formal,
principled intention-aware planning frameworks for interact-
ing with boundedly rational, self-interested agents:

• Nested MDP framework for interacting in fully observ-
able environments (Section 2): inspired by [1], it consti-
tutes a recursive reasoning formalism to predict the other
agents’ intention efficiently and such predictive informa-
tion is then exploited to plan our agent’s optimal interac-
tion policy. The cost of solving nested MDP is linear in
the length of time horizon and the depth of reasoning.

• Intention-aware POMDP (IA-POMDP) framework for in-
teracting in partially observable environments (Section 3):
it extends nested MDP by integrating it into POMDP for
tracking our agent’s belief. By exploiting problem struc-
ture in terms of the other agents’ full observability, IA-
POMDP can be solved efficiently in polynomial time.

2. NESTED MDP
Nested MDP constitutes a recursive reasoning process com-

prising k reasoning levels: at level 0, our agent’s best re-
sponse is computed by considering the other agent’s actions
as stochastic noise in an MDP’s transition model. At level
k ≥ 1, our agent plans its optimal strategy by assuming that
the other agent’s strategy is based only on lower reasoning
levels 0, . . . , k − 1. Formally, nested MDP at level k ≥ 1 for

agent 1 is a tuple Mk
1
4
= (S,U, V, T,R, {πi2}k−1

i=0 , φ) where

• S is a set of all possible states of the environment;

• U and V are sets of all possible actions available to agents
1 and 2, respectively;

• T : S×U×V×S → [0, 1] denotes the transition probability
of going from state s ∈ S to state s′ ∈ S using agent 1’s
action u ∈ U and agent 2’s action v ∈ V ;

• R : S × U × V → R is the reward function of agent 1;

• πi2 : S × V → [0, 1] is the reasoning model at level i < k
predicting the mixed strategy of agent 2 for each state;

• φ ∈ (0, 1) is a discount factor.

The optimal value function of nested MDP Mk
1 at level k ≥ 1

for agent 1 satisfies the following Bellman equation:

Uk1 (s)
4
= max

u∈U

∑
v∈V

π̂k−1
2 (s, v) Qk1(s, u, v)

Qk1(s, u, v)
4
=R(s, u, v) + φ

∑
s′∈S

T (s, u, v, s′) Uk1 (s′)
(1)



where the mixed strategy π̂k−1
2 of the other agent 2 is pre-

dicted by averaging uniformly over all its reasoning models
{πi2}k−1

i=0 at levels 0, 1, . . . , k − 1 because its actual level of
reasoning is not known to our agent 1:

π̂k−1
2 (s, v)

4
= β

k−1∑
i=0

πi2(s, v) . (2)

Agent 2’s reasoning model π0
2 at level 0 is induced by solv-

ing a conventional MDP that represents agent 1’s actions
as stochastic noise in its transition model. To obtain agent
2’s reasoning models {πi2}k−1

i=1 at levels i = 1, . . . , k − 1, let
Opti2(s) be the set of agent 2’s optimal actions for state s
induced by solving its nested MDP M i

2, which recursively in-
volves building agent 1’s reasoning models {πl1}i−1

l=0 at levels
l = 0, 1, . . . , i− 1, by definition. Then,

πi2(s, v)
4
=

{
|Opti2(s)|−1 if v ∈ Opti2(s),

0 otherwise.

After predicting agent 2’s strategy π̂k−1
2 (2), agent 1’s op-

timal policy (i.e., reasoning model) πk1 at level k can be
induced by solving its corresponding nested MDP Mk

1 (1).

3. INTENTION-AWARE POMDP
To tackle partial observability, it seems obvious to first

consider generalizing the recursive reasoning formalism of
nested MDP. This approach yields two practical complica-
tions: (a) our agent’s belief over both the physical states and
the other agent’s belief has to be modeled, and (b) the other
agent’s mixed strategy has to be predicted for each of its
infinitely many possible beliefs. The I-POMDP framework
faces both difficulties and consequently incurs a prohibitively
expensive processing cost that involves solving exponential
number of POMDPs [2]. In practice where we are subject
to limited information, cognition, and time, we hardly re-
call performing such sophisticated modeling of our human
counterpart during interaction. Instead, we often make sat-
isficing decisions by limiting our predictions of counterpart’s
strategy to some specific states and considering how likely
each state is based on our belief over these states.

To realize this intuition, we propose an alternative intention-
aware POMDP (IA-POMDP) framework by exploiting the
following structural assumption: the environment is fully ob-
servable to the other agent. Such an assumption is practical
to make when the other agent’s sensing capability is superior
(e.g., human) or we do not know nor want to underestimate
the other agent’s sensing capability, especially in competi-
tive scenarios. Surprisingly, this simple assumption allevi-
ates both difficulties faced by I-POMDP, thus making IA-
POMDP computationally efficient. Compared to existing
game-theoretic frameworks [3, 4], our assumption is far less
restrictive. More importantly, though it makes IA-POMDP
less expressive than I-POMDP, it significantly boosts the
practicality of decision-theoretic planning frameworks for
non-cooperative MAS. Formally, IA-POMDP for agent 1 is
defined as a tuple (S,U, V,O, T, Z,R, π̂k2 , φ, b0) where

• S is a set of all possible states of the environment;

• U and V are sets of all possible actions available to our
agent 1 and the other agent 2, respectively;

• O is a set of all possible observations of our agent 1;

• T : S × U × V × S → [0, 1] is a transition function that
depends on the joint actions of both agents;

• Z : S ×U ×O → [0, 1] denotes the probability Pr(o|s′, u)
of making observation o ∈ O in state s′ ∈ S using our
agent 1’s action u ∈ U ;

• R : S × U × V → R is the reward function of agent 1;

• π̂k2 : S × V → [0, 1] denotes the predictive probability
Pr(v|s) (i.e., predicted mixed strategy) of agent 2 select-
ing action v in state s and is derived using (2) by solving
its nested MDPs at levels 0, . . . , k;

• φ ∈ (0, 1) is a discount factor; and

• b0 ∈ ∆(S) is a prior belief over the states of environment.

Solving IA-POMDP involves choosing the policy that max-
imizes the expected total reward with respect to the pre-
diction of agent 2’s mixed strategy using nested MDP. The
optimal value function of IA-POMDP for our agent 1 satis-
fies the following Bellman equation:

Vn+1(b) = max
u

Qn+1(b, u)

Qn+1(b, u) = R(b, u) + φ
∑
v,o

Pr(v, o|b, u) Vn(b′)

where our agent 1’s expected immediate payoff is

R(b, u) =
∑
s,v

R(s, u, v) Pr(v|s) b(s)

and the belief update is

b′(s′) = β Z(s′, u, o)
∑
s

T (s, u, v, s′) Pr(v|s) b(s) .

Like POMDP, the optimal value function Vn(b) of IA-POMDP
can be approximated arbitrarily closely (for infinite horizon)
by a piecewise-linear and convex function that takes the form
of a set Vn

2 of α vectors: Vn(b) = maxα∈Vn(α · b). Thus,
solving IA-POMDP is equivalent to computing the corre-
sponding set of α vectors, which grows exponentially with
the time horizon: |Vn+1| = |U ||Vn||V ||O|. To avoid this ex-
ponential blow-up, IA-POMDP inherits essential properties
from POMDP that make it amenable to be solved by exist-
ing sampling-based algorithms, such as [5], of POMDP in
polynomial time. For interested readers, a further technical
discussion of IA-POMDP as well as an empirical evaluation
of our proposed frameworks can be found in the extended
version of this paper3.
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