
Supplementary Material for Bayesian Nonparametric Federated Learning of
Neural Networks

Mikhail Yurochkin 1 2 Mayank Agarwal 1 2 Soumya Ghosh 1 2 3 Kristjan Greenewald 1 2 Trong Nghia Hoang 1 2

Yasaman Khazaeni 1 2

1. Single Hidden Layer Inference
The goal of maximum a posteriori (MAP) estimation is
to maximize posterior probability of the latent variables:
global atoms {θi}∞i=1 and assignments of observed neural
network weight estimates to global atoms {Bj}Jj=1, given
estimates of the batch weights {vjl for l = 1, . . . , Lj}Jj=1:

arg max
{θi},{Bj}

P ({θi},{Bj}|{vjl}) ∝ (1)

P ({vjl}|{θi}, {Bj})P ({Bj})P ({θi}).

MAP estimates given matching. First we note that given
{Bj} it is straightforward to find MAP estimates of {θi}
based on Gaussian-Gaussian conjugacy:

θ̂i =

∑
j,lB

j
i,lvjl/σ

2
j

1/σ2
0 +

∑
j,lB

j
i,l/σ

2
j

for i = 1, . . . , L, (2)

where L = max{i : Bji,l = 1 for l = 1, . . . , Lj , j =
1, . . . , J} is the number of active global atoms, which is an
(unknown) latent random variable identified by {Bj}. For
simplicity we assume Σ0 = Iσ2

0 , Σj = Iσ2
j and µ0 = 0.

Inference of atom assignments (Proposition 2 of the
main text). We can now cast optimization correspond-
ing to (1) with respect to only {Bj}Jj=1. Taking natural
logarithm we obtain:

−1

2

∑
i

‖θ̂i‖2
σ2
0

+D log(2πσ2
0) +

∑
j,l

Bji,l
‖vjl − θ̂i‖2

σ2
j


+ log(P ({Bj}). (3)

We now simplify the first term of (3) (in this and subsequent
derivations we use ∼= to say that two objective functions

*Equal contribution 1IBM Research, Cambridge 2MIT-IBM
Watson AI Lab 3Center for Computational Health. Correspondence
to: Mikhail Yurochkin <mikhail.yurochkin@ibm.com>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

are equivalent up to terms independent of the variables of
interest):

−1

2

∑
i

‖θ̂i‖2
σ2
0

+D log(2πσ2
0) +

∑
j,l

Bji,l
‖vjl − θ̂i‖2

σ2
j


=− 1

2

∑
i

(
〈θ̂i, θ̂i〉
σ2
0

+D log(2πσ2
0)

+
∑
j,l

Bji,l
〈vjl,vjl〉 − 2〈vjl, θ̂i〉+ 〈θ̂i, θ̂i〉

σ2
jl


∼=−

1

2

∑
i

〈θ̂i, θ̂i〉
 1

σ2
0

+
∑
j,l

Bji,l
σ2
j

+D log(2πσ2
0)

− 2〈θ̂i,
∑
j,l

Bji,l
vjl
σ2
j

〉


=

1

2

∑
i

〈θ̂i, θ̂i〉
 1

σ2
0

+
∑
j,l

Bji,l
σ2
j

−D log(2πσ2
0)


=

1

2

∑
i

(
‖
∑
j,lB

j
i,lvjl/σ

2
j ‖2

1/σ2
0 +

∑
j,lB

j
i,l/σ

2
j

−D log(2πσ2
0)

)
.

(4)

We consider an iterative optimization approach: fixing all
but oneBj we find the corresponding optimal assignment,
then pick a new j at random and repeat until convergence.
We define notation −j to denote “all but j”, and let L−j =

max{i : B−ji,l = 1} denote number of active global weights
outside of group j. We partition (4) between i = 1, . . . , L−j
and i = L−j + 1, . . . , L−j + Lj , and since we are solving



Supplementary Material for Bayesian Nonparametric Federated Learning of Neural Networks

forBj , we subtract terms independent ofBj :∑
i

(
‖
∑
j,lB

j
i,lvjl/σ

2
j ‖2

1/σ2
0 +

∑
j,lB

j
i,l/σ

2
j

−D log(2πσ2
0)

)

∼=
L−j∑
i=1

(
‖
∑
lB

j
i,lvjl/σ

2
j +

∑
−j,lB

j
i,lvjl/σ

2
j ‖2

1/σ2
0 +

∑
lB

j
i,l/σ

2
j +

∑
−j,lB

j
i,l/σ

2
j

−
‖
∑
−j,lB

j
i,lvjl/σ

2
j ‖2

1/σ2
0 +

∑
−j,lB

j
i,l/σ

2
j

)

+

L−j+Lj∑
i=L−j+1

(
‖
∑
lB

j
i,lvjl/σ

2
j ‖2

1/σ2
0 +

∑
lB

j
i,l/σ

2
j

)
. (5)

Now observe that
∑
lB

j
i,l ∈ {0, 1}, i.e. it is 1 if some

neuron from batch j is matched to global neuron i and 0
otherwise. Due to this we can rewrite (5) as a linear sum
assignment problem:
L−j∑
i=1

Lj∑
l=1

Bji,l

(
‖vjl/σ2

j +
∑
−j,lB

j
i,lvjl/σ

2
j ‖2

1/σ2
0 + 1/σ2

j +
∑
−j,lB

j
i,l/σ

2
j

−
‖
∑
−j,lB

j
i,lvjl/σ

2
j ‖2

1/σ2
0 +

∑
−j,lB

j
i,l/σ

2
j

)

+

L−j+Lj∑
i=L−j+1

Lj∑
l=1

Bji,l

(
‖vjl/σ2

j ‖2

1/σ2
0 + 1/σ2

j

)
. (6)

Now we consider second term of (3):

logP ({Bj}) = logP (Bj |B−j) + logP (B−j).

First, because we are optimizing for Bj , we can ignore
logP (B−j). Second, due to exchangeability of batches
(i.e. customers of the IBP), we can always consider Bj

to be the last batch (i.e. last customer of the IBP). Let
m−ji =

∑
−j,lB

j
i,l denote number of times batch weights

were assigned to global atom i outside of group j. We now
obtain the following:

logP (Bj |B−j) ∼=
L−j∑
i=1

Lj∑
l=1

Bji,l

log
m−ji
J

+

1−
Lj∑
l=1

Bji,l

log
J −m−ji

J


− log

 L−j+Lj∑
i=L−j+1

Lj∑
l=1

Bji,l

+

 L−j+Lj∑
i=L−j+1

Lj∑
l=1

Bji,l

 log
γ0
J
.

(7)

We now rearrange (7) as linear sum assignment problem:
L−j∑
i=1

Lj∑
l=1

Bji,l log
m−ji

J −m−ji
(8)

+

L−j+Lj∑
i=L−j+1

Lj∑
l=1

Bji,l

(
log

γ0
J
− log(i− L−j)

)
.

Combining (6) and (8) we arrive at the cost specification for
findingBj as minimizer of

∑
i

∑
lB

j
i,lC

j
i,l, where:

Cji,l = (9)

−



∥∥∥∥∥vjl
σ2
j

+
∑
−j,l

Bji,l
vjl
σ2
j

∥∥∥∥∥
2

1
σ2
0

+ 1
σ2
j

+
∑
−j,lB

j
i,l/σ

2
j

−

∥∥∥∥∥∑−j,lBji,l vjlσ2
j

∥∥∥∥∥
2

1
σ2
0

+
∑
−j,lB

j
i,l/σ

2
j

+2 log
m−ji

J −m−ji
, i ≤ L−j∥∥∥∥ vjl

σ2
j

∥∥∥∥2

1

σ20
+ 1

σ2
j

− 2 log
i−L−j
γ0/J

, L−j < i ≤ L−j + Lj .

This completes the proof of Proposition 2 in the main text.

2. Multilayer Inference Details
Figure 1 illustrates the overall multilayer inference proce-
dure visually, and Algorithm 1 provides the details.

Algorithm 1 Multilayer PFNM

1: LC+1 ← number of outputs
2: # Top down iteration through layers
3: for layers c = C,C − 1, . . . , 2 do
4: Collect hidden layer c from the J batches and form

vcjl.
5: Call Single Layer Neural Matching algorithm with

output dimension Lc+1 and input dimension 0 (since
we do not use the weights connecting to lower layers
here).

6: Form global neuron layer c from output of the single
layer matching.

7: Lc ← card(∪Jj=1T cj ) (greedy approach).
8: end for
9: # Match bottom layer using weights connecting to both

the input and the layer above.
10: Call Single Layer Neural Matching algorithm with out-

put dimension L2 and input dimension equal to the
number of inputs.

11: Return global assignments and form global mutltilayer
model.

3. Complexity Analysis
In this section we present a brief discussion of the complex-
ity of our algorithms. The worst case complexity per layer
is achieved when no neurons are matched and is equal to
O(D(JLj)

2) for building the cost matrix and O((JLj)
3)

for running the Hungarian algorithm, where Lj is the num-
ber of neurons per batch (here for simplicity we assume
that each batch has same number of neurons) and J is the
number of batches. The best case complexity per layer (i.e.



Supplementary Material for Bayesian Nonparametric Federated Learning of Neural Networks

Figure 1: Probabilistic Federated Neural Matching algo-
rithm showing matching of three multilayer MLPs. Nodes
in the graphs indicate neurons, neurons of the same color
have been matched. On the left, the individual layer match-
ing approach is shown, consisting of using the matching
assignments of the next highest layer to convert the neurons
in each of the J batches to weight vectors referencing the
global previous layer. These weight vectors are then used
to form a cost matrix, which the Hungarian algorithm then
uses to do the matching. Finally, the matched neurons are
then aggregated and averaged to form the new layer of the
global model. As shown on the right, in the multilayer set-
ting the resulting global layer is then used to match the next
lower layer, etc. until the bottom hidden layer is reached
(Steps 1, 2, 3,... in order).

when all neurons are matched) is O(DL2
j + L3

j ), also note
that complexity is independent of the data size. In practice
the complexity is closer to the best case since global model
size is moderate (i.e. L �

∑
j Lj). Actual timings with

our code for the experiments in the main text are as follows
- 40sec for Fig. 2a,b at J = 30 groups; 500sec for c,d at
J = 30 (the DL2

j term is dominating as CIFAR10 dimen-
sion is much higher than MNIST); 60sec for e,f (J = 10)
at C = 6 layers; 150sec for g,h (J = 10) at C = 6. The
computations were done using 2 CPU cores and 4GB mem-
ory on a machine with 3.0 GHz core speed. We note that
(i) this computation only needs to be performed once (ii)
the cost matrix construction which appears to be dominat-
ing can be trivially sped up using GPUs (iii) recent work
demonstrates impressive large scale running times for the
Hungarian algorithm using GPUs (Date & Nagi, 2016).

4. Experimental Details and Additional
Results

Data partitioning. In the federated learning setup, we
analyze data from multiple sources, which we call batches.
Data on the batches does not overlap and may have different
distributions. To simulate federated learning scenario we
consider two partition strategies of MNIST and CIFAR-10.
For each pair of partition strategy and dataset we run 10
trials to obtain mean accuracies and standard deviations.
The easier case is homogeneous partitioning, i.e. when
class distributions on batches are approximately equal as

well as batch sizes. To generate homogeneous partitioning
with J batches we split examples for each of the classes
into J approximately equal parts to form J batches. In
the heterogeneous case, batches are allowed to have highly
imbalanced class distributions as well as highly variable
sizes. To simulate heterogeneous partition, for each class
k, we sample pk ∼ DirJ(0.5) and allocate pk,j proportion
of instances of class k of the complete dataset to batch
j. Note that due to small concentration parameter, 0.5, of
the Dirichlet distribution, some batches may entirely miss
examples of a subset of classes.

Batch networks training. Our modeling framework and
ensemble related methods operate on collection of weights
of neural networks from all batches. Any optimization pro-
cedure and software can be used locally on batches for
training neural networks. We used PyTorch (Paszke et al.,
2017) to implement the networks and train these using the
AMSGrad optimizer (Reddi et al., 2018) with default pa-
rameters unless otherwise specified. For reproducibility we
summarize all parameter settings in Table 1.

Table 1: Parameter settings for batch neural networks train-
ing

MNIST CIFAR-10

Neurons per layer 100 100
Learning rate 0.01 0.001
L2 regularization 10−6 10−5

Minibatch size 32 32
Epochs 10 10
Weights initialization N (0, 0.01) N (0, 0.01)
Bias initialization 0.1 0.1

4.1. Parameter Settings for the Baselines

We first formally define the ensemble procedure. Let
ŷj ∈ ∆K−1 denote the probability distribution over the
K classes output by neural network trained on data from
batch j for some test input x. Then ensemble prediction
is arg max

k

1
J

∑J
j=1 ŷj,k. In our experiments, we train each

individual network on the specific batch dataset using the
parameters listed in Table 1, and then compute the perfor-
mance using the ensemble aggregation technique.

For the downpour SGD (Dean et al., 2012) we used PyTorch,
SGD optimizer and parameter settings as in Table 1 for the
local learners. The master neural network was optimized
with Adam and the same initial learning rate as in the Ta-
ble 1. The local learners communicated the accumulated
gradients back to the master network after every mini-batch
update. This translates to the setting of Dean et al. (2012)



Supplementary Material for Bayesian Nonparametric Federated Learning of Neural Networks

1.0 10.0 50.0
γ

0.
1

0.
3

0.
5

0.
7

0.
9

1.
0

σ
95.3933 95.4068 95.3888

95.3212 95.3157 95.3335

95.3063 95.3050 95.3057

95.2672 95.2840 95.2955

95.1478 95.2502 95.2637

94.9853 95.2158 95.2318

σ0 = 1.0

1.0 10.0 50.0
γ

0.
1

0.
3

0.
5

0.
7

0.
9

1.
0

σ

95.4417 95.4583 95.4562

95.4163 95.4332 95.4295

95.3873 95.3610 95.3838

95.3622 95.3620 95.3510

95.3027 95.3483 95.3492

95.3225 95.3360 95.3312

σ0 = 3.0

1.0 10.0 50.0
γ

0.
1

0.
3

0.
5

0.
7

0.
9

1.
0

σ

95.4150 95.4242 95.4225

95.4605 95.4582 95.4393

95.4582 95.4747 95.4710

95.4323 95.4440 95.4252

95.4295 95.4318 95.4388

95.4013 95.4143 95.4400

σ0 = 10.0

95.0

95.1

95.2

95.3

95.4

(a) MNIST homogeneous

1.0 10.0 50.0
γ

0.
1

0.
3

0.
5

0.
7

0.
9

1.
0

σ

94.4292 94.4768 94.5018

94.5450 94.5375 94.4882

94.4638 94.5047 94.4955

94.5090 94.5288 94.3070

94.2318 94.3527 94.4393

94.0678 94.2800 94.3973

σ0 = 1.0

1.0 10.0 50.0
γ

0.
1

0.
3

0.
5

0.
7

0.
9

1.
0

σ

94.2728 94.0885 94.1670

94.7312 94.7175 94.5803

94.7312 94.5872 94.5915

94.6847 94.6993 94.6422

94.8688 94.7258 94.6542

94.6487 94.6530 94.6942

σ0 = 3.0

1.0 10.0 50.0
γ

0.
1

0.
3

0.
5

0.
7

0.
9

1.
0

σ

93.7340 93.6930 93.7098

94.0435 94.2225 94.1845

94.5457 94.2068 94.4602

94.6482 94.3805 94.5083

94.3792 94.4712 94.6320

94.6800 94.6518 94.7695

σ0 = 10.0

93.8

94.0

94.2

94.4

94.6

94.8

(b) MNIST heterogeneous

1.0 10.0 50.0
γ

0.
1

0.
3

0.
5

0.
7

0.
9

1.
0

σ

35.1340 35.0230 35.5306

34.7628 34.8712 35.2402

35.1716 34.9454 34.9758

34.0136 34.0430 33.9620

33.8276 33.4218 34.1030

33.8498 34.2772 34.4910

σ0 = 1.0

1.0 10.0 50.0
γ

0.
1

0.
3

0.
5

0.
7

0.
9

1.
0

σ

35.0364 35.3394 34.9632

35.5362 34.5238 35.1856

35.2376 35.3082 35.2112

35.5894 35.2142 35.6576

35.2376 35.0722 35.5960

34.7778 35.5590 35.4686

σ0 = 3.0

1.0 10.0 50.0
γ

0.
1

0.
3

0.
5

0.
7

0.
9

1.
0

σ

35.6324 35.8448 35.9914

36.4006 36.6440 36.1948

37.1354 37.1344 37.0354

37.3302 37.4516 37.6512

37.8286 37.7058 37.7158

37.6874 37.9902 37.8416

σ0 = 10.0

33.6

34.4

35.2

36.0

36.8

37.6

(c) CIFAR homogeneous

1.0 10.0 50.0
γ

0.
1

0.
3

0.
5

0.
7

0.
9

1.
0

σ

30.8466 30.2954 28.5596

29.0242 29.8614 29.5608

28.8498 29.9692 30.8042

28.7532 28.0314 27.3388

26.7638 27.2688 27.8936

28.2316 29.1272 27.8028

σ0 = 1.0

1.0 10.0 50.0
γ

0.
1

0.
3

0.
5

0.
7

0.
9

1.
0

σ

31.1412 29.6882 29.5392

30.7284 30.9318 29.9834

31.2028 31.7424 31.1014

31.1548 30.3416 30.0494

29.2364 31.0726 30.4670

29.7346 30.8630 30.0380

σ0 = 3.0

1.0 10.0 50.0
γ

0.
1

0.
3

0.
5

0.
7

0.
9

1.
0

σ

30.1822 30.3986 29.3208

30.9072 31.5166 30.3228

31.0004 31.8636 32.2182

32.0742 32.1638 31.8926

33.3664 33.5056 33.1534

33.6082 33.7252 33.8980

σ0 = 10.0

27.0

28.5

30.0

31.5

33.0

(d) CIFAR heterogeneous

Figure 2: Parameter sensitivity analysis for J = 25.

0.1 0.3 0.5 0.7 1.0

σ2

95.5

96.0

96.5

97.0

97.5

98.0

98.5

Tr
ai

n 
ac

cu
ra

cy
 (%

)

J=2
J=10
J=15
J=20
J=25

(a) MNIST homogeneous

0.1 0.3 0.5 0.7 1.0

σ2

91

92

93

94

95

96

97

Tr
ai

n 
ac

cu
ra

cy
 (%

)

J=2
J=10
J=15
J=20
J=25

(b) MNIST heterogeneous

0.1 0.3 0.5 0.7 1.0

σ2

34

36

38

40

42

44

46

Tr
ai

n 
ac

cu
ra

cy
 (%

)

J=2
J=10
J=15
J=20
J=25

(c) CIFAR homogeneous

0.1 0.3 0.5 0.7 1.0

σ2

27.5

30.0

32.5

35.0

37.5

40.0

42.5

45.0

Tr
ai

n 
ac

cu
ra

cy
 (%

)

J=2
J=10
J=15
J=20
J=25

(d) CIFAR heterogeneous

Figure 3: Sensitivity analysis of σ2 for fixed σ2
0 = 10 and

γ0 = 1 for varying J .

with parameters npush = nfetch = 1. Note that with this
approach the global network and networks for each of the
batches are constrained to have identical number of neurons

per layer, which is 100 in our experiments.

For Federated Averaging (McMahan et al., 2017), we use
SGD optimizer for learning the local networks with the
rest of the parameters as defined in Table 1. We initialize
all the local networks with the same seed, and train these
networks for 10 epochs initially and for 5 epochs after the
first communication round. At each communication round,
we utilize all the local networks (C = 1) for the central
model update.

4.2. Parameter Settings for Matching with Additional
Communications

For neural matching with additional communications, we
train the local networks for 10 epochs for the first com-
munication round, and 5 epochs thereafter. All the other
parameters are as mentioned in Table 1. The local networks
are trained using AMSGrad optimizer (Reddi et al., 2018),
and the optimizer parameters are reset after every communi-
cation. We also found it useful to decay the initial learning
rate by a factor of 0.99 after every communication.

4.3. Parameter Sensitivity Analysis for PFNM

Our models presented in Section 3 of the main text have
three parameters σ2

0 , γ0 and σ2 = σ2
1 = . . . = σ2

J . The
first parameter, σ2

0 , is the prior variance of weights of the
global neural network. Second parameter, γ0, controls dis-
covery of new neurons and correspondingly increasing γ0



Supplementary Material for Bayesian Nonparametric Federated Learning of Neural Networks

increases the size of the learned global network. The third
parameter, σ2, is the variance of the local neural network
weights around corresponding global network weights. We
empirically analyze the effect of these parameters on the
accuracy for single hidden layer model with J = 25 batches
in Figure 2. The heatmap indicates the accuracy on the
training data - we see that for all parameter values consid-
ered performance doesn’t not fluctuate significantly. PFNM
appears to be robust to choices of σ2

0 and γ0, which we
set to 10 and 1 respectively in the experiments with single
communication round. Parameter σ2 has slightly higher
impact on the performance and we set it using training data
during experiments. To quantify importance of σ2 for fixed
σ2
0 = 10 and γ0 = 1 we plot average train data accuracies

for varying σ2 in Figure 3. We see that for homogeneous
partitioning and one hidden layer σ2 has almost no effect
on the performance (Fig. 3a and Fig. 3c). In the case of
heterogeneous partitioning (Fig. 3b and Fig. 3d), effect of
σ2 is more noticeable, however all considered values result
in competitive performance.

References
Date, K. and Nagi, R. Gpu-accelerated hungarian algorithms

for the linear assignment problem. Parallel Computing,
57:52–72, 2016.

Dean, J., Corrado, G., Monga, R., Chen, K., Devin, M.,
Mao, M., Senior, A., Tucker, P., Yang, K., Le, Q. V., et al.
Large scale distributed deep networks. In Advances in
neural information processing systems, pp. 1223–1231,
2012.

McMahan, B., Moore, E., Ramage, D., Hampson, S., and
y Arcas, B. A. Communication-efficient learning of deep
networks from decentralized data. In Artificial Intelli-
gence and Statistics, pp. 1273–1282, 2017.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E.,
DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., and Lerer,
A. Automatic differentiation in pytorch. In NIPS-W,
2017.

Reddi, S. J., Kale, S., and Kumar, S. On the conver-
gence of adam and beyond. In International Confer-
ence on Learning Representations, 2018. URL https:
//openreview.net/forum?id=ryQu7f-RZ.

https://openreview.net/forum?id=ryQu7f-RZ
https://openreview.net/forum?id=ryQu7f-RZ

	Single Hidden Layer Inference
	Multilayer Inference Details
	Complexity Analysis
	Experimental Details and Additional Results
	Parameter Settings for the Baselines
	Parameter Settings for Matching with Additional Communications
	Parameter Sensitivity Analysis for PFNM


