
Supplementary Material for Bayesian Nonparametric Federated Learning of
Neural Networks

Mikhail Yurochkin 1 2 Mayank Agarwal 1 2 Soumya Ghosh 1 2 3 Kristjan Greenewald 1 2 Trong Nghia Hoang 1 2

Yasaman Khazaeni 1 2

1. Single Hidden Layer Inference
The goal of maximum a posteriori (MAP) estimation is
to maximize posterior probability of the latent variables:
global atoms {θi}∞i=1 and assignments of observed neural
network weight estimates to global atoms {Bj}Jj=1, given
estimates of the batch weights {vjl for l = 1, . . . , Lj}Jj=1:

arg max
{θi},{Bj}

P ({θi},{Bj}|{vjl}) ∝ (1)

P ({vjl}|{θi}, {Bj})P ({Bj})P ({θi}).

MAP estimates given matching. First we note that given
{Bj} it is straightforward to find MAP estimates of {θi}
based on Gaussian-Gaussian conjugacy:
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for i = 1, . . . , L, (2)

where L = max{i : Bji,l = 1 for l = 1, . . . , Lj , j =
1, . . . , J} is the number of active global atoms, which is an
(unknown) latent random variable identified by {Bj}. For
simplicity we assume Σ0 = Iσ2

0 , Σj = Iσ2
j and µ0 = 0.

Inference of atom assignments (Proposition 2 of the
main text). We can now cast optimization correspond-
ing to (1) with respect to only {Bj}Jj=1. Taking natural
logarithm we obtain:
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+ log(P ({Bj}). (3)

We now simplify the first term of (3) (in this and subsequent
derivations we use ∼= to say that two objective functions
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are equivalent up to terms independent of the variables of
interest):
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We consider an iterative optimization approach: fixing all
but oneBj we find the corresponding optimal assignment,
then pick a new j at random and repeat until convergence.
We define notation −j to denote “all but j”, and let L−j =

max{i : B−ji,l = 1} denote number of active global weights
outside of group j. We partition (4) between i = 1, . . . , L−j
and i = L−j + 1, . . . , L−j + Lj , and since we are solving
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Now observe that
∑
lB

j
i,l ∈ {0, 1}, i.e. it is 1 if some

neuron from batch j is matched to global neuron i and 0
otherwise. Due to this we can rewrite (5) as a linear sum
assignment problem:
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Now we consider second term of (3):

logP ({Bj}) = logP (Bj |B−j) + logP (B−j).

First, because we are optimizing for Bj , we can ignore
logP (B−j). Second, due to exchangeability of batches
(i.e. customers of the IBP), we can always consider Bj

to be the last batch (i.e. last customer of the IBP). Let
m−ji =

∑
−j,lB

j
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were assigned to global atom i outside of group j. We now
obtain the following:
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We now rearrange (7) as linear sum assignment problem:
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Combining (6) and (8) we arrive at the cost specification for
findingBj as minimizer of
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This completes the proof of Proposition 2 in the main text.

2. Multilayer Inference Details
Figure 1 illustrates the overall multilayer inference proce-
dure visually, and Algorithm 1 provides the details.

Algorithm 1 Multilayer PFNM

1: LC+1 ← number of outputs
2: # Top down iteration through layers
3: for layers c = C,C − 1, . . . , 2 do
4: Collect hidden layer c from the J batches and form

vcjl.
5: Call Single Layer Neural Matching algorithm with

output dimension Lc+1 and input dimension 0 (since
we do not use the weights connecting to lower layers
here).

6: Form global neuron layer c from output of the single
layer matching.

7: Lc ← card(∪Jj=1T cj ) (greedy approach).
8: end for
9: # Match bottom layer using weights connecting to both

the input and the layer above.
10: Call Single Layer Neural Matching algorithm with out-

put dimension L2 and input dimension equal to the
number of inputs.

11: Return global assignments and form global mutltilayer
model.

3. Complexity Analysis
In this section we present a brief discussion of the complex-
ity of our algorithms. The worst case complexity per layer
is achieved when no neurons are matched and is equal to
O(D(JLj)

2) for building the cost matrix and O((JLj)
3)

for running the Hungarian algorithm, where Lj is the num-
ber of neurons per batch (here for simplicity we assume
that each batch has same number of neurons) and J is the
number of batches. The best case complexity per layer (i.e.
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Figure 1: Probabilistic Federated Neural Matching algo-
rithm showing matching of three multilayer MLPs. Nodes
in the graphs indicate neurons, neurons of the same color
have been matched. On the left, the individual layer match-
ing approach is shown, consisting of using the matching
assignments of the next highest layer to convert the neurons
in each of the J batches to weight vectors referencing the
global previous layer. These weight vectors are then used
to form a cost matrix, which the Hungarian algorithm then
uses to do the matching. Finally, the matched neurons are
then aggregated and averaged to form the new layer of the
global model. As shown on the right, in the multilayer set-
ting the resulting global layer is then used to match the next
lower layer, etc. until the bottom hidden layer is reached
(Steps 1, 2, 3,... in order).

when all neurons are matched) is O(DL2
j + L3

j ), also note
that complexity is independent of the data size. In practice
the complexity is closer to the best case since global model
size is moderate (i.e. L �

∑
j Lj). Actual timings with

our code for the experiments in the main text are as follows
- 40sec for Fig. 2a,b at J = 30 groups; 500sec for c,d at
J = 30 (the DL2

j term is dominating as CIFAR10 dimen-
sion is much higher than MNIST); 60sec for e,f (J = 10)
at C = 6 layers; 150sec for g,h (J = 10) at C = 6. The
computations were done using 2 CPU cores and 4GB mem-
ory on a machine with 3.0 GHz core speed. We note that
(i) this computation only needs to be performed once (ii)
the cost matrix construction which appears to be dominat-
ing can be trivially sped up using GPUs (iii) recent work
demonstrates impressive large scale running times for the
Hungarian algorithm using GPUs (Date & Nagi, 2016).

4. Experimental Details and Additional
Results

Data partitioning. In the federated learning setup, we
analyze data from multiple sources, which we call batches.
Data on the batches does not overlap and may have different
distributions. To simulate federated learning scenario we
consider two partition strategies of MNIST and CIFAR-10.
For each pair of partition strategy and dataset we run 10
trials to obtain mean accuracies and standard deviations.
The easier case is homogeneous partitioning, i.e. when
class distributions on batches are approximately equal as

well as batch sizes. To generate homogeneous partitioning
with J batches we split examples for each of the classes
into J approximately equal parts to form J batches. In
the heterogeneous case, batches are allowed to have highly
imbalanced class distributions as well as highly variable
sizes. To simulate heterogeneous partition, for each class
k, we sample pk ∼ DirJ(0.5) and allocate pk,j proportion
of instances of class k of the complete dataset to batch
j. Note that due to small concentration parameter, 0.5, of
the Dirichlet distribution, some batches may entirely miss
examples of a subset of classes.

Batch networks training. Our modeling framework and
ensemble related methods operate on collection of weights
of neural networks from all batches. Any optimization pro-
cedure and software can be used locally on batches for
training neural networks. We used PyTorch (Paszke et al.,
2017) to implement the networks and train these using the
AMSGrad optimizer (Reddi et al., 2018) with default pa-
rameters unless otherwise specified. For reproducibility we
summarize all parameter settings in Table 1.

Table 1: Parameter settings for batch neural networks train-
ing

MNIST CIFAR-10

Neurons per layer 100 100
Learning rate 0.01 0.001
L2 regularization 10−6 10−5

Minibatch size 32 32
Epochs 10 10
Weights initialization N (0, 0.01) N (0, 0.01)
Bias initialization 0.1 0.1

4.1. Parameter Settings for the Baselines

We first formally define the ensemble procedure. Let
ŷj ∈ ∆K−1 denote the probability distribution over the
K classes output by neural network trained on data from
batch j for some test input x. Then ensemble prediction
is arg max

k

1
J

∑J
j=1 ŷj,k. In our experiments, we train each

individual network on the specific batch dataset using the
parameters listed in Table 1, and then compute the perfor-
mance using the ensemble aggregation technique.

For the downpour SGD (Dean et al., 2012) we used PyTorch,
SGD optimizer and parameter settings as in Table 1 for the
local learners. The master neural network was optimized
with Adam and the same initial learning rate as in the Ta-
ble 1. The local learners communicated the accumulated
gradients back to the master network after every mini-batch
update. This translates to the setting of Dean et al. (2012)
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Figure 2: Parameter sensitivity analysis for J = 25.

0.1 0.3 0.5 0.7 1.0

σ2

95.5

96.0

96.5

97.0

97.5

98.0

98.5

Tr
ai

n 
ac

cu
ra

cy
 (%

)

J=2
J=10
J=15
J=20
J=25

(a) MNIST homogeneous

0.1 0.3 0.5 0.7 1.0

σ2

91

92

93

94

95

96

97

Tr
ai

n 
ac

cu
ra

cy
 (%

)

J=2
J=10
J=15
J=20
J=25

(b) MNIST heterogeneous

0.1 0.3 0.5 0.7 1.0

σ2

34

36

38

40

42

44

46

Tr
ai

n 
ac

cu
ra

cy
 (%

)

J=2
J=10
J=15
J=20
J=25

(c) CIFAR homogeneous

0.1 0.3 0.5 0.7 1.0

σ2

27.5

30.0

32.5

35.0

37.5

40.0

42.5

45.0

Tr
ai

n 
ac

cu
ra

cy
 (%

)

J=2
J=10
J=15
J=20
J=25

(d) CIFAR heterogeneous

Figure 3: Sensitivity analysis of σ2 for fixed σ2
0 = 10 and

γ0 = 1 for varying J .

with parameters npush = nfetch = 1. Note that with this
approach the global network and networks for each of the
batches are constrained to have identical number of neurons

per layer, which is 100 in our experiments.

For Federated Averaging (McMahan et al., 2017), we use
SGD optimizer for learning the local networks with the
rest of the parameters as defined in Table 1. We initialize
all the local networks with the same seed, and train these
networks for 10 epochs initially and for 5 epochs after the
first communication round. At each communication round,
we utilize all the local networks (C = 1) for the central
model update.

4.2. Parameter Settings for Matching with Additional
Communications

For neural matching with additional communications, we
train the local networks for 10 epochs for the first com-
munication round, and 5 epochs thereafter. All the other
parameters are as mentioned in Table 1. The local networks
are trained using AMSGrad optimizer (Reddi et al., 2018),
and the optimizer parameters are reset after every communi-
cation. We also found it useful to decay the initial learning
rate by a factor of 0.99 after every communication.

4.3. Parameter Sensitivity Analysis for PFNM

Our models presented in Section 3 of the main text have
three parameters σ2

0 , γ0 and σ2 = σ2
1 = . . . = σ2

J . The
first parameter, σ2

0 , is the prior variance of weights of the
global neural network. Second parameter, γ0, controls dis-
covery of new neurons and correspondingly increasing γ0
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increases the size of the learned global network. The third
parameter, σ2, is the variance of the local neural network
weights around corresponding global network weights. We
empirically analyze the effect of these parameters on the
accuracy for single hidden layer model with J = 25 batches
in Figure 2. The heatmap indicates the accuracy on the
training data - we see that for all parameter values consid-
ered performance doesn’t not fluctuate significantly. PFNM
appears to be robust to choices of σ2

0 and γ0, which we
set to 10 and 1 respectively in the experiments with single
communication round. Parameter σ2 has slightly higher
impact on the performance and we set it using training data
during experiments. To quantify importance of σ2 for fixed
σ2
0 = 10 and γ0 = 1 we plot average train data accuracies

for varying σ2 in Figure 3. We see that for homogeneous
partitioning and one hidden layer σ2 has almost no effect
on the performance (Fig. 3a and Fig. 3c). In the case of
heterogeneous partitioning (Fig. 3b and Fig. 3d), effect of
σ2 is more noticeable, however all considered values result
in competitive performance.
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