
Collective Model Fusion for Multiple Black-Box Experts

Quang Minh Hoang * 1 Trong Nghia Hoang * 2 Bryan Kian Hsiang Low 3 Carl Kingsford 1

Abstract
Model fusion is a fundamental problem in collec-
tive machine learning (ML) where independent
experts with heterogeneous learning architectures
are required to combine expertise to improve pre-
dictive performance. This is particularly chal-
lenging in information-sensitive domains where
experts do not have access to each other’s internal
architecture and local data. This paper presents
the first collective model fusion framework for
multiple experts with heterogeneous black-box ar-
chitectures. The proposed method will enable this
by addressing the key issues of how black-box
experts interact to understand the predictive be-
haviors of one another; how these understandings
can be represented and shared efficiently among
themselves; and how the shared understandings
can be combined to generate high-quality consen-
sus prediction. The performance of the resulting
framework is analyzed theoretically and demon-
strated empirically on several datasets.

1. Introduction
Practical scenarios that involve learning in complex envi-
ronments often require the collaboration of multiple experts
operating concurrently on different sub-domains. Motivated
under this context, collective learning (Hoang et al., 2019)
is an emerging study of a distributed paradigm where each
local expert learns independently from its data and exchange
knowledge with others to achieve better performance.

Existing collective learning literature (Gifford, 2009; Yahya
et al., 2017; Hoang et al., 2019), however, usually assumes
perfect clarity of local expert models, which entails fully
transparent model architectures and publicly accessible lo-
cal data used to train these experts. To facilitate model
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fusion, local experts are further expected to have employed
a homogeneous design with limited freedom in their choices
of parameters. Despite enabling collective learning, these
restrictive assumptions have imposed a rigidity on the al-
gorithmic level that is generally undesirable for practical
purposes. For example, applications learning from private
medical records are often prohibited from publicizing sensi-
tive patient information; model architectures in confidential
domains such as financial forecasting are preferably kept
undisclosed to guard against adversarial attacks. As such,
it is unrealistic for a collaboration scheme among these
experts to presume prior understanding of their behaviors,
much less subjecting them to conceptual homogeneity.

Another central issue of collective learning, as pointed out
by Hoang et al. (2019), is the computational and communi-
cation bottleneck arising from having one single or a few
central servers to coordinate the collective agents. In prac-
tice, such a centralized collective architecture also often
leads to having undesirable choke points of failure in the
system. To avoid this, Hoang et al. (2019) proposed moving
towards a decentralized learning paradigm where collective
agents only exchange information with their neighbor in a
communication network. The collective learning framework
of Hoang et al. (2019), however, is not designed to work with
heterogeneous, black-box models because it assumes perfect
knowledge and availability of the agent models. This is of-
ten not true in practice, especially for information-sensitive
domains where collaboration occurs in a transactional basis
(i.e., short-term collaboration) and may not get prioritized
over data and model privacy.

This paper thus presents a novel collective learning plat-
form for black-box fusion that addresses the following chal-
lenges: (a) performing fusion without access to the black-
box training data and architectures, (b) performing fusion
when the black-box models are not permanently available,
and (c) avoiding centralized bottlenecks and risk of failure
for large-scale fusion with numerous black-box experts.

To achieve this, we first develop a collective fusion paradigm
that allows black-box experts to interact and learn the pre-
dictive behaviors of one another, which are then succinctly
encoded into information summaries with constant memory-
footprint for efficient communication and assimilation. A
decentralized communication algorithm is further developed
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to regulate the propagation flow of these local summaries to
optimize the expected improvement rate of the experts while
guaranteeing that they reach a consensus upon convergence.

In particular, we have made the following contributions:

1. A gradient fusion scheme for performing light-weight
collective inference among learning agents which assume
the corresponding black-box models are always available
for querying (Section 4.1).

2. A surrogate fusion scheme which transfuses the pre-
dictive behavior of black-box experts onto imitator models
of choice to allow persistent collective inference among
learning agents even when black-box models are no longer
available for querying (Section 4.2).

3. A decentralized communication algorithm for the learn-
ing agents implementing the above fusion schemes to propa-
gate among themselves their prediction and parameter gradi-
ents, thus removing the operational bottleneck (Section 4.3).

4. A formal theoretical analysis to guarantee the predictive
disagreement rate between the imitating surrogate and the
black-box model (Section 5), thus asserting the imitation
quality of our surrogate fusion scheme in Section 4.2.

5. An extensive empirical study that demonstrates the effi-
ciency of our black-box model fusion paradigm on several
real-world datasets with promising results (Section 6).

To the best of our knowledge, this work is the first to propose
a collective model fusion framework for black-box models.

2. Related Work
Collective learning is a new study arising from the tradi-
tional context of distributed machine learning (ML) where
data analytics is provided and engineered in the cloud (Chen
et al., 2013b; Low et al., 2015; Deisenroth & Ng, 2015;
Hoang et al., 2016; McMahan et al., 2017; Liu et al., 2018).
Distributed ML typically requires broadcasting data statis-
tics from local experts to a central server for processing.
This, however, exposes a single choke point for failure as
all local experts have to constantly communicate with the
cloud to operate successfully, which places a severe stress
on the central server’s communication bandwidth.

Some works in this direction (Allamraju & Chowdhary,
2017; Chen et al., 2012; 2013c; Natarajan et al., 2014;
Ruofei & Low, 2018; Yurochkin et al., 2019) have attempted
to alleviate this bottleneck by enforcing an identical knowl-
edge representation across all experts to ease communica-
tion and model aggregation among themselves. This is,
however, not desirable in practical information-sensitive
domains (e.g., health-care analytics with private medical
records) where experts cannot communicate in advance to
agree on the same model architecture. In contrast, allowing

heterogeneity in their architectures avoids these problems,
but causes difficulty in communication among experts.

Aiming for the best of both worlds, a successful collective
model fusion framework should therefore allow heteroge-
neous experts with different black-box learning architectures
to represent, communicate and combine their expertise effi-
ciently to harness the full potential of collective intelligence
without exposing sensitive information to others. Devis-
ing this framework is our key contribution in this research,
which is formulated in Section 3 and addressed in Section 4.
Its theoretical analysis and empirical evaluation are also
provided in Section 5 and Section 6, respectively.

3. Problem Formulation
Let B , {pi(y | `i(x,Di);ωi)}mi=1 denotes a collection of
probabilistic black-box predictors. Each predictor pi(y |
`i(x,Di);ωi) is parameterized by (a) a non-linear function
`i(x,Di) acting as sufficient statistics of the input x given
local data Di; and (b) a set of characterizing parameters ωi
that accounts for its predictive uncertainty. Both `i(x,Di)
and ωi were trained a priori on a separate set of data Di ,
{(x(t)

i , y
(t)
i )}ni

t=1.

For example, one such predictive distribution is a Gaussian
distribution centered around the sufficient statistics. Our
developed framework in Section 4 works with any choices
of {pi}mi=1 and also does not require access to their internal
architecture.

Thus, given such predictive distribution, the local predic-
tion of an input x is determined as the output candidate
with highest probability score yi(x) = argmaxy pi(y |
`i(x,Di);ωi). However, since `i(x,Di) and ωi were esti-
mated using only a single subset of data Di, the resulting
predictive distribution might not be able to elicit accurate
prediction.

To improve their predictive performance without central-
izing data to build a global model, a popular approach is
to construct a product-of-expert (PoE) (Deisenroth & Ng,
2015) model that assumes shared characterizing parameters,
i.e. ω1 = ω2 = . . . = ωm = ω, among local experts,
which allows them to communicate and aggregate their vot-
ing scores for each output candidate in order to determine
the most likely output yB(x) conditioned on the entire set
of data D , {Di}mi=1,

yB(x) , argmax
y

m∏
i=1

pi (y | `i(x,Di);ω)

= argmax
y

m∑
i=1

log pi (y | `i (x,Di) ;ω) , (1)

where log pi(y | `i(x,Di);ω) can be viewed as the indi-
vidual voting score of predictive distribution pi for output
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candidate y1. The shared parameters ω can be learned via
maximizing the model evidence of PoE:

ω∗ , argmax
ω

m∑
i=1

ni∑
t=1

log pi

(
y
(t)
i | `i(x

(t)
i ,Di);ω

)
(2)

This approach, however, requires full access to each predic-
tor’s model architecture (i.e., `i(x,Di) and ω) and training
data Di, which is not possible in many practical settings
as discussed in Section 1. Furthermore, the PoE model of
Deisenroth & Ng (2015) also requires a central server to
coordinate communication among local experts, which inad-
vertently introduces a single choke point of operation failure
as well as a severe strain on the server’s computation and
communication resources. These are in fact common issues
with the majority of literature on distributed machine learn-
ing (ML), which were previously discussed in Section 2.

To resolve these issues, this paper transforms the original
distributed learning task into a collective learning problem
similar to Hoang et al. (2019). This is, however, highly non-
trivial since our learning scenarios regard each expert model
as a black box whereas the work of Hoang et al. (2019)
explicitly imposes a homogeneous learning architecture,
i.e., sparse Gaussian processes regression (Titsias & Lázaro-
Gredilla, 2013; Quiñonero-Candela & Rasmussen, 2005;
Hoang et al., 2015; 2016; 2017; 2018), on all experts to forge
a superficial communication medium among themselves.

This violates two desiderata of collective learning that we
argued for in Section 1: (a) Experts do not have to reveal
their model architectures to others to exchange information,
thus avoid being exposed to security risk (e.g., leaking sen-
sitive information); and (b) experts do not have to conform
to a homogeneous learning architecture to combine their
expertise (i.e., model fusion), thus eliminating the need of a
common model architecture.

Our work hence generalizes this work in two directions:

1. To forge a mutual understanding between two black-box
experts without having them disclosed their model archi-
tectures, we develop a black-box fusion paradigm for two
distinct scenarios: (a) a light-weight gradient fusion scheme
for performing ephemeral collective inference on-the-fly
directly with black-box models (Section 4.1) as opposed to
(b) an imitating algorithm that transfers and combines the ex-
pertise of black-box models onto persistent de novo models
of choice (Section 4.2), which can be fused efficiently.

2. To facilitate fusion among experts with heterogeneous
learning architectures, we develop a gradient-based commu-
nication algorithm, which allows the experts to exchange

1A local predictive distribution decides the most likely
output candidate using its individual voting score yi(x) =
argmaxy log pi(y | `i(x,Di);ω), which is computed based
solely on its local data Di and is therefore less accurate.

pertinent information regarding their predictive knowledge
via propagating gradients of the predictive probabilities with
respect to corresponding prediction estimates produced by
their choices of surrogates for one another. Such informa-
tion can be computed without forcing the experts to align
within a common model architecture, thus allowing greater
diversity among them, which is important for the fused
model to achieve better performance. We also show that the
developed communication algorithm can be made decen-
tralized while still allowing experts to reach a consensus in
prediction upon convergence (Section 5).

4. Collective Black-Box Fusion
In this section, we present the aforementioned ephemeral
and persistent black-box fusion algorithms. In a centralized
setting, these fusion algorithms are achieved by each expert
publishing its parameter and/or prediction gradients to a
master server, which aggregates them to compute the corre-
sponding global gradients. The master server will broadcast
these gradients back to each expert, which will use those to
update both its local parameters and prediction.

These centralized fusion schemes will be detailed in Sec-
tion 4.1 and Section 4.2, respectively. This paper, however,
argues against such a centralized setting (Section 1) and will
therefore extend these fusion schemes to enable decentral-
ized gradient fusion without requiring a master server to
coordinate communication (Section 4.3).

4.1. Collective Inference via Gradient Aggregation

This section will present our Collective Inference via Gradi-
ent Aggregation (CIGAR) algorithm for light-weight fusion.
In particular, let pi(y | `i(x,Di);ωi) denote the local ex-
pert parameterized by `i(x,Di) and ωi.

Then, let ∇y log pi(y | `i(x,Di);ωi) denote its local pre-
diction gradient. Thus, assuming access to this local gradi-
ent, one can compute the global prediction gradient via

∇y log p (y | x) =

m∑
i=1

∇y log pi (y | `i;ωi) . (3)

The local prediction estimate yi = y
(t)
i of each expert can

then be updated via gradient ascent using the above global
prediction gradient to approach a prediction consensus,

y
(t+1)
i = y

(t)
i + η∇y log p

(
y(t) | x

)
, (4)

with a sufficiently small learning rate η > 0. However,
since we do not have access to pi(y | `i(x,Di);ωi) inter-
nal architecture, its prediction gradient cannot be computed
analytically. Instead, we employ a random gradient esti-
mation technique to approximate ∇y log pi(y | `i;ωi) via
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∇y log pi(y|x;ωi) ' Ez
[
z

λy
log

(
pi(y + λyz|x;ωi)

pi(y|x;ωi)

)]
= Ez

[
∇(z)
y log pi(y|x,ωi)

]
(5)

where λy > 0 is a sufficiently small value, z ∼ N(0, 1) and

∇(z)
y log pi(y|x,ω) ,

z

λy
log

(
pi(y + λyz|x;ω)

pi(y|x;ω)

)
(6)

That is, ∇(z)
y log pi(y|`i,ωi) can effectively be used as un-

biased stochastic gradients that guarantee convergence to a
local maximizer of the global model’s prediction likelihood.
Note that in this section, we abbreviate `i(x,Di) by `i to
avoid cluttering the notation. The black-box notation can
then be rewritten succinctly as pi(y|`i,ωi). The rationality
behind this random estimation is explained in Appendix A.

4.2. Collective Learning via Black-Box Imitation

This section will present our Collective Learning via Black-
box Imitation (COLBI) algorithm for transferring expertise
from black-box models to white-box surrogates and per-
forming collective inference via fusing these surrogates. To
elaborate, we first develop an imitation algorithm to translate
the predictive behavior of each black-box pi(y|`i(x,Di);ω)
into a local surrogate qi(y|x;w). We further parameterize
these surrogates by global set of parameters w, which allow
them to combine their expertise for better performance. To
achieve this, we develop a collective learning algorithm to
fuse these white-boxes into a global, persistent2 surrogate.

Building Surrogate Model for Black-Box Expert

For ease of notation, the subscript iwhich indexes the expert
is dropped since there is no need to differentiate between
different experts in the context of this sub-section.

Naively, to fit the surrogate q(y | x;w) to the predictive
pattern of p(y | `(x,D);ω), we assume access to a finite set
of unlabeled data {x(t)}nt=1 6= D, which can be queried for
the expert’s black-box predictors

{
`(x(t),D)

}n
t=1

. Exploit-
ing this information, we can fit the surrogate to match the
predictive pattern of the black-box expert at those queried
data points via minimizing the following objective:

L̂(w) =
1

n

n∑
t=1

DKL

(
q(y|x(t);w)‖p(y|`(x(t),D);ω)

)
with respect to w. This can be achieved by choosing
q(y | x;w) such that each KL term in the above objec-
tive can be expressed as an analytic, convex function of
w (though this choice might restrict the expressiveness of
the surrogate model) whose exact, optimal solution can be
found efficiently using any of the existing convex optimizer
software.

2Once constructed, this persistent model will require no further
query from black-box experts to perform prediction.

This, however, requires us to have access to the explicit ar-
chitecture of p(y | `(x(t),D);ω), which violates the black-
box setting in Section 3. To overcome that, we instead
re-parameterize DKL(q(y | x(t);w)‖p(y | `(x(t),D);ω))
as

DKL (q‖p) = Ey∼q(y|x(t);w)

[
log

q(y|x(t);w)

p(y|`(x(t),D);ω)

]
= Eε∼N(0,I)

[
log

q(h(ε;u)|x(t);w)

p(h(ε;u)|`(x(t),D);ω)

]
where h(ε;u) is a transport function (parameterized by u)
that transforms a noise distribution ε ∼ N(0, I) into the
surrogate’s predictive distribution q(y|x(t);w). This pa-
rameterization thus makes the distribution that underlies the
expectation independent of the parameters w and u. Exploit-
ing this re-parameterization, we can further derive unbiased
stochastic gradients for w and u via sampling ε ∼ N(0, I):

∇(ε)
w L̂ =

1

n

n∑
t=1

∇(ε)
w log

q
(
h(ε;u) | x(t);w

)
p
(
h(ε;u) | `(x(t),D);ω

) , (7)

∇(ε)
u L̂ =

1

n

n∑
t=1

∇(ε)
u log

q
(
h(ε;u) | x(t);w

)
p
(
h(ε;u) | `(x(t),D);ω

) , (8)

which can be used to optimize w and u numerically via
coordinate gradient descent. The above stochastic gradient
computation therefore only requires queried feedback from
p(h(ε;u) | `(x(t),D);ω) at (h(ε;u),x(t)) for a particu-
lar random sample of ε. The queried feedback can then be
used in conjunction with the randomized gradient estimation
technique (see Appendix A) to compute an unbiased stochas-
tic estimate of ∇u log p(h(ε;u) | `(x(t),D);ω), which is
necessary to compute the above equations.

Remark 1. In practice, one often characterizes h(ε;u) as a
deep neural network (DNN)3 where u represents its internal
weight. If q(y | x;w) is chosen such that the objective is
convex in w and u can be found such that the distribution
of the mapping y = h(ε;u) with ε ∼ N(0, I) coincides
with the surrogate’s predictive distribution q(y | x;w) then
the above coordinate gradient descent will converge to the
optimal parameter w = ŵ.

It can then be shown later in Section 5 (see Theorem 1)
that with high probability, the chance over a random choice
of x ∼ P(x) (with P(x) denotes an arbitrary input dis-
tribution) for which q(y | x; ŵ)’s prediction disagrees or
deviates significantly from that of p(y | `(x,D);ω) is small,
thus validating the quality of the resulting surrogate model.

Surrogate Fusion via Gradient Aggregation
3When h(ε;u) is characterized as a DNN, the above gradi-

ent update equation can be implicitly implemented as a back-
propagation parameter update process.
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Let q(y | x;w) ,
∏m
j=1 qj(y | x;w) denote the PoE model

of the resulting surrogates and let qj’s current estimate of w
be wj . We can compute its global gradient by aggregating
the local gradients of all surrogates evaluated at wj :

∇w log q (y | x;wj) =

m∑
i=1

∇w log qi (y | x;wj) (9)

Thus, at iteration t+1, each surrogate qj(y|x;wj) can then
update their current estimate w

(t)
j via

w
(t+1)
j = w

(t)
j + η∇w log q

(
y | x;w(t+1)

j

)
, (10)

where η is a sufficiently small learning rate and the super-
script (t) indexes the update iteration. Note that by choosing
the surrogates to be log concave, the above update rule is
guaranteed to approach the true optimum asymptotically.

Both fusion-update scheme for w and y in Section 4.1 share
a similar centralized design, in which gradient aggregation
happens at a master server and updates occur locally af-
ter receiving gradient broadcasts from such server. This
is inefficient in practice because for each local estimate of
the variable being optimized, the master server needs to
receive local gradients from all available experts evaluated
at that point. When the number of experts grows, these
schemes will place severe strains on the central server both
in terms of computing resource and communication band-
width. In the next section, we detail a decentralized fusion
scheme where gradient aggregation only occurs within local
neighborhoods of experts and are propagated throughout the
communication network via overlapping neighborhood.

4.3. Decentralized Learning and Inference

Due to limited space, we only detail our decentralized sur-
rogate fusion algorithm in this section. The decentralized
collective inference is very similar in spirit and hence, omit-
ted from the main text of this paper.

To proceed, let us now relax the assumption that there exists
a centralized server where the surrogates or local experts can
pool their local gradients. In this case, each surrogate model
qi(y|x;wi) needs to maintain and update its own parameter
estimate wi by computing Eq. (9) via peer-to-peer commu-
nication. This can be achieved by noting that the form of
the approximate gradient in Eq. (9) decomposes additively
across local surrogates, which can be essentially cast as a
distributed sum problem and can be solved efficiently using
the decentralized algorithm detailed in Hoang et al. (2019).

Given that there are m surrogate models corresponding to
m black-box experts, this amounts to solving m problems
concurrently. In particular, at gradient update iteration t+1,
the experts exchange information in d rounds where d is the
diameter of the tree topology that characterizes the direct
communication link between them.

In particular, letMw,h+1
ij (k) denote the message from qi

to qj about qi’s estimation of the global parameter gradient
evaluated at qk’s current parameter estimation w = wk.
Then, at round h+ 1 of message passing, we compute the

messageMw,h+1
ij ,

{
Mw,h+1

ij (k)
}m
k=1

to be sent from
qi to qj where:

Mw,h+1
ij (k) , ∇w log qi(y | x;w)

∣∣∣
w=wk

+
(∑

`∈Ai
Mw,h

`i (k)
)
−Mw,h

ji (k)
(11)

where Ai is the communication neighborhood of qi which
includes qi. Given an appropriate choice of {Ai}mi=1, it
can be shown that the above message passing will converge
after a finite number of iterations. Upon convergence, it can
be shown that the global gradient for iteration t in Eq. (9)
can be re-constructed for each expert using the received
messages at the last iteration d (Hoang et al., 2019):

∇w log p(y | x)
∣∣∣
w=wi

= ∇y log qi(y | x;wi)
∣∣∣
w=wi

+ Mw,d
`i (i) ∀` ∈ Ai, ` 6= i (12)

Each expert can then use gradient ascent to update its own
estimate. Again, if we choose all surrogates to be log con-
cave, then all experts will converge to the global optimum
regardless of their (different) initial estimates.

5. Theoretical Analysis
This section analyzes the imitation quality of the surrogate
algorithm in Section 4.2. In particular, we show that under
mild assumptions, the probability that the predictions of the
imitating surrogate qi(y | x; ŵi) (Section 4.2) and its corre-
sponding black-box expert pi(y | `i(x,Di);ωi) disagree is
bounded with respect to several quantities of interest.

To proceed, we first put forward the following assumptions:

Assumption 1. The surrogate models {qi(y | x;wi)}mi=1

can be selected such that given the optimized {ŵi}mi=1

(Section 4.2), there exists 0 < η < +∞ for which
DKL(qi(y | x; ŵi)‖pi(y | `i(x,Di);ω)) ≤ η for any x.

Assumption 2. The global minimizer of the surrogate fitting
objective function L̂(w) can be computed exactly using the
re-parameterization technique presented in Section 4.2.

Thus, assuming the surrogate fitting objective function can
be optimized globally (Assumption 2), we can expect the
prediction of the resulting surrogate to agree with the pre-
diction of its corresponding black-box. This intuition will
be formalized in the remaining of this section. To continue,
we need the following definitions:

Definition 1 (Surrogate Robustness) Let x denote the
test input and let {qi(y | x; ŵi)}mi=1 denote the learned
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surrogates parameterized by {ŵi}mi=1 via minimizing the
objective in Section 4.1. The prediction robustness α > 0 of
the surrogates with respect to x is defined as

α ,
1

2
min

1≤i≤m

(
qi(yi | x; ŵi)−max

y 6=yi
qi(y | x; ŵi)

)
(13)

where we define yi , maxy qi(y | x; ŵi).

Using the above definition, we can establish the following
result that specifies the sufficient condition for the surrogate
to yield the same prediction as its black-box counterpart:

Lemma 1 For an arbitrary test input x, let α denote the
trained surrogates’ predictive robustness (see Definition 1)
with respect to x. If the following is satisfied,

DKL

(
qi(y|x; ŵi)‖pi(y|`i(x,Di);ω)

)
≤ α2

2 log 2
, (14)

qi(y | x; ŵi) agrees with pi(y | `i(x,Di);ω) on the opti-
mal prediction for input x.

Proof. See Appendix B.

For each local expert pi, let us denote Li(ŵi) ,
Ex[DKL(qi(y|x; ŵi)‖pi(y|`i(x,Di);ω))] and L̂i(ŵi) ,
1
n

∑n
t=1 DKL(qi(y

(t)|x(t); ŵi)‖pi(y(t)|`i(x(t),Di);ω)).

Intuitively, the second quantity L̂i(ŵi) is the loss incurred
by the black-box fitting objective (Section 4.2) on the train-
ing dataset while the first quantity Li(ŵi) is the expected
loss incurred when tested on the entire space of test in-
put. Lemma 2 now establishes the next result which upper-
bounds Li(ŵi) in terms of the optimal black-box fitting
noise θ , mini Li(w

∗
i ) where w∗i , minw Li(w).

Lemma 2 Let n denote the number of training samples
used to fit qi(y | x; ŵi) to pi(y | `i(x,Di);ω). Let η be
defined in Assumption 1 and δ ∈ (0, 1). Then, we can
guarantee that with probability at least 1 − δ, Li(ŵi) ≤
θ + 2ε by setting n = (η2/2ε2) log(2/δ).

Proof. See Appendix C.

Combining Lemma 1 and Lemma 2, we can establish a
stronger result which provides a lower-bound for the proba-
bility that qi(y | x; ŵi) will agree with pi(y | `i(x,Di);ω)
as detailed in Theorem 1 below.

Theorem 1 Let x be an arbitrary test input and let E de-
notes the event that qi(y | x; ŵi) and pi(y | `i(x,Di);ω)
agree on the prediction for x. Then, given a training dataset
of size n = (η2/2ε2) log(2/δ), with probability 1− δ,

P (E) ≥ 1− 2

α2

(
θ + 2ε

)
log 2 . (15)

This implies the event that prediction disagreement between
the surrogate and black-box happens with probability at
most 2/α2 (θ + 2ε) log 2.

Proof. See Appendix D. Our theoretical analysis thus con-
firms that the proposed surrogate imitation algorithm (Sec-
tion 4.2) yields surrogates with high fidelity.

6. Experiments
This section evaluates and reports the empirical performance
of our collective fusion frameworks CIGAR (light-weight,
ephemeral inference fusion) and COLBI (persistent surro-
gate model fusion) on three real-world datasets:

(a) The DIABETES dataset (Efron et al., 2004) containing
442 diabetes patient records with 10 features. The target
output is a quantitative measure of disease progression one
year after baseline.

(b) The AIMPEAK dataset (Chen et al., 2013a) containing
41850 instances of traffic measured along 775 road segments
of an urban road network, each comprises of 5 variables that
describe the corresponding segment. The target output is
the averaged vehicle speed on the segment (km/h).

(c) The PROTEIN dataset (Rana, 2013) featuring physico-
chemical properties of protein tertiary structure with 45730
instances, each containing 9 variables that describe various
properties of the structure. The target output is the size of
the residue (kDa).

For each dataset above, we demonstrate the performance
of both COLBI and CIGAR fusion for 10 experts on two
settings: (a) homogeneous experts with 10 sparse Gaussian
process (SGP) black-boxes (Hensman et al., 2013); (b) het-
erogeneous experts with 5 SGP black-boxes and 5 Bayesian
ridge regression (BRR) (Radford, 1999) black-boxes.

Each black-box is trained on a randomly selected (non-
overlapping) subset of 30 (DIABETES), 500 (AIMPEAK)
and 500 (PROTEIN) data points, respectively. For experi-
ments with COLBI fusion, an equal number of data points is
used to learn each imitating surrogate model. The predictive
performance of each persistent surrogate (COLBI) and each
light-weight (ephemeral) fusion client (CIGAR) is then mea-
sured by the normalized root-mean-square-error (nRMSE)
metric (pre- and post-fusion) with respect to corresponding
test sets containing 35 (DIABETES), 500 (AIMPEAK) and
500 (PROTEIN) data points.

6.1. CIGAR performance

Fig. 1 shows CIGAR fusion results on three tested datasets:

(a) Fig. 1a, 1c, and 1e demonstrate fusion gain from in-
dividual perspectives of the (light-weight) fusion clients
corresponding to 5 SGP and 5 BRR black-box experts on
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Figure 1. Graphs of normalized RMSE vs. no. fusion iterations for
CIGAR on: DIABETES with (a) heterogeneous and (b) homoge-
neous black-box experts; AIMPEAK with (c) heterogeneous and
(d) homogeneous experts; PROTEIN with (e) heterogeneous and
(f) homogeneous experts.
DIABETES (Efron et al., 2004), AIMPEAK (Chen et al.,
2013a) and PROTEIN (Rana, 2013) datasets, respectively.
Across these experiments, the prediction errors (nRMSE)
achieved by majority of fusion clients show a decreasing
trend with more fusion iterations. Over 40 iterations, most
clients improve its predictive accuracy by up to 16%.

(b) Fig. 1b, 1d, and 1f further demonstrate fusion gain of
CIGAR in setting with homogeneous experts (10 SGP black-
box experts) on DIABETES (Efron et al., 2004), AIMPEAK
(Chen et al., 2013a) and PROTEIN (Rana, 2013) datasets
respectively. Again, the errors incurred by the majority of
clients decrease up to 19% over 40 fusion iterations, with the
exception of clientsB0 andB1 in Fig. 1b (DIABETES with
homogeneous black-box experts). This is not unexpected
because the (pre-fusion) predictive performance of the other
clients are significantly worse, hence causing B0 and B1 to
succumb to the opinion of the mass. Nevertheless, we also
observe the performance drop in both instances is less than
4%, whereas the performance gain achieved by the rest of
the clients are generally more significant (up to 7%). The
averaged nRMSE gain is thus positive, as shown in Fig. 3a.

Fig. 4a and 4b demonstrate the convergence of predicted
outputs of 10 fusion clients across 35 test points of the DIA-
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Figure 2. Graphs of normalized RMSE vs. no. fusion iterations for
COLBI on: DIABETES with (a) heterogeneous and (b) homoge-
neous black-box experts; AIMPEAK with (c) heterogeneous and
(d) homogeneous experts; PROTEIN with (e) heterogeneous and
(f) homogeneous experts

BETES dataset. The box-plot shown at each test datum is
plotted with 10 predicted outputs made by the correspond-
ing fusion clients. The box-plots in Fig. 4a (pre-fusion
predictions) generally show larger variance than those in
Fig. 4b (post-fusion predictions), which suggests that the
fusion clients have moved towards a consensus prediction
after 40 fusion iterations, as expected.

6.2. COLBI performance

Fig. 2 shows COLBI fusion results on the same datasets:

(a) Fig. 2a, 2c and 2e demonstrate fusion gain from individ-
ual perspectives of the surrogate models corresponding to 5
SGP and 5 BRR black-box experts while Fig. 2b, 2d and 2f
demonstrate that of the surrogate models corresponding to
10 SGP black-box experts on DIABETES, AIMPEAK and
PROTEIN, respectively. Overall, performance gains (up to
18%) for majority of surrogates are again observed consis-
tently across all experiments, with some slight decrease in
performance (less than 3%) observed at several surrogates.

(b) Fusion gain is much more significant for COLBI on
the DIABETES dataset compared to the other two datasets.
This is because the COLBI surrogates in both DIABETES
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Figure 3. Graphs of averaged nRMSE of various methods vs. no.
fusion iterations on (a) DIABETES, (b) AIMPEAK and (c) PRO-
TEIN datasets; (d) Graphs of no. black-box queries used per
iteration of various methods vs. no. black-box experts

experiments are trained (aligned with their corresponding
black-boxes) using a very limited amount of surrogate data
(30 data points), thus are likely to have more “gaps of knowl-
edge” that can strongly benefit from predictive fusion.

Similar to the convergence results of CIGAR, Fig. 4c and 4d
also demonstrate a general consensus over predicted outputs
of 10 surrogates across 35 test points of the DIABETES
dataset. This is observed as the variance of post-fusion
box-plots is significantly smaller than that of pre-fusion.

Fig. 3a, 3b and 3c suggest that the average fusion gain by
CIGAR is more significant than that of COLBI on both
heterogeneous and homogeneous black-box expert settings.
This is not surprising since CIGAR inference fusion com-
bines the prediction of the actual black-box experts, whereas
COLBI fusion aggregates over surrogate models, which are
only trained to mimic the provided experts. As the quality
to which these surrogate models capture the behaviour of
their corresponding experts is not perfect, fusing them is
expected to be less effective.

Last but not least, Fig. 3d shows the number of black-box
query calls per fusion iteration (CIGAR) and per imitation
iteration (COLBI) (with varying amount of data used to
align each surrogate with its expert - 50, 100, 250 and 500)
as the number of black-box experts increases. With large
amount of surrogate data, the number of query calls made by
COLBI quickly overwhelms that of CIGAR (which does not
need to query surrogate data), thus confirming the trade-off
between producing light-weight, ephemeral fused prediction
(CIGAR) vs. costly, persistent fused model (COLBI).
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Figure 4. Graphs of (a) pre-fusion and (b) post-fusion nRMSE
box-plot at every test datum with CIGAR on DIABETES dataset;
(c) pre-fusion and (d) post-fusion nRMSE box-plot at every test
datum with COLBI on DIABETES dataset.

7. Conclusion
This paper tackles a collective ML problem where the goal
is to combine the expertise of independent black-box mod-
els with heterogeneous learning architectures to produce
improved predictive capabilities. We identify three chal-
lenges pertaining to this problem: (a) performing fusion
without access to the black-box training data and architec-
tures, (b) performing fusion when the black-box models
are not permanently available, and (c) avoiding centralized
bottlenecks and risk of failure for large-scale fusion with nu-
merous black-box experts. These challenges are addressed
as this paper presents two fusion methods: (1) Decentralized
CIGAR to perform light-weight inference fusion and (2) De-
centralized COLBI to perform persistent surrogate fusion.
We further provide theoretical analysis and perform empir-
ical evaluation of our method on three real-world datasets.
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A. Random Gradient Estimation
The (non-analytic) local gradient of each wrapper with re-
spect to ω can be estimated using the following randomized
gradient estimation technique:

∇ω log pi(y|x;ω) ' Ez

[
z

λ
log

(
pi(y|x;ω + λz)

pi(y|x;ω)

)]
= Ez

[
∇(z)
ω log pi(y|x,ω)

]
(16)

where λ > 0 is a sufficiently small value, z ∼ N (0, I) and

∇(z)
ω log pi(y|x,ω) ,

z

λ
log

(
pi(y|x;ω + λz)

pi(y|x;ω

)
(17)

which can effectively be used as an unbiased stochastic
gradient that guarantees convergence. Note that in this
section, we instead omit `i(x,Di) from pi(y|`i(x,Di);ω)
to avoid cluttering the notation. The black-box notation is
instead abbreviated succinctly as pi(y|x,ω).

To understand the rationality behind Eq. (16) above, let g(ω)
be an arbitrary function ω. Then, let z ∼ N (0, I) and v ,
z/‖z‖, it follows that v is a unit vector and ∇ωg(ω)>v =
Dvg(ω) where Dvg(ω) is the directional gradient of g(ω),

Dvg(ω) , limα→0
1

α

(
g(ω + αv)− g(ω)

)
. (18)

Choose α = λ‖z‖ with λ > 0, Eq. (18) can be rewritten as

Dvg(ω) ' 1

λ‖z‖

(
g (ω + λz)− g(ω)

)
(19)

for sufficiently small value of λ. Thus, plugging Eq. (19)
and v = z/‖z‖ into∇ωg(ω)>v = Dvg(ω) yields

∇ωg(ω)>z =
1

λ

(
g(ω + λz)− g(ω)

)
(20)

As such, let ∇(z)
ω g(ω) , (z/λ)(g(ω + λz) − g(ω)), it is

easy to see that E[∇(z)
ω g(ω)] = E[z∇g(ω)>z] = (V[z] +

E[z]E[z]>)∇ωg(ω) = ∇ωg(ω). The last equality follows
because E[z] = 0 and V[z] = I by definition. Finally,
plugging g(ω) = log pi(y|x;ω) yields Eq. (16).

Likewise, the local gradient with respect to y can also be
estimated using the same technique:

∇y log pi(y|x;ω) ' Ez
[
z

λ
log

(
pi(y + λz|x;ω)
pi(y|x;ω)

)]
= Ez

[
∇(z)
y log pi(y|x,ω)

]
(21)

where λ > 0 is a sufficiently small value, z ∼ N (0, 1) and

∇(z)
y log pi(y|x,ω) ,

z

λ
log

(
pi(y + λz|x;ω)
pi(y|x;ω)

)
(22)

Thus, ∇(z)
ω log pi(y|x,ω) and ∇(z)

y log pi(y|x,ω) can be
used as unbiased stochastic gradients of the full gradients
∇ω log pi(y|x,ω) and ∇y log pi(y|x,ω), respectively.

B. Proof of Lemma 1
By Pinkser inequality, we have

1

2 log 2

∥∥∥qi − pi∥∥∥2
1
≤ DKL(qi‖pi) ≤

α2

2 log 2
, (23)

which implies |qi(y|x; ŵi) − pi(y|`i(x;Di);ω)| ≤ α for
all y. Let yp , argmax pi(y|`i(x,Di);ω) and yq ,
argmax qi(y|x; ŵi), respectively. Thus, we have

pi(yp|`i(x,Di);ω) ≥ pi(yq|`i(x,Di);ω)

≥ qi(yq|x; ŵi)− α
≥ qi(yp|x; ŵi) + 2α− α
≥ pi(yp|`i(x,Di);ω) + 2α− 2α

= pi(yp|`i(x,Di);ω) . (24)

That is, pi(yp|`i(x,Di);ω) ≥ pi(yq|`i(x,Di);ω) ≥
pi(yp|`i(x,Di);ω), which immediately follows that
pi(yp|`i(x,Di);ω) = pi(yq|`i(x,Di);ω). This means
yp = yq

4 or equivalently, qi(y|x; ŵi) agrees with
pi(y|`i(x,Di);ω) on the prediction of x. To under-
stand this, note that the second and fourth inequalities
follow immediately from the fact that |qi(y|x; ŵi) −
pi(y|`i(x,Di);ω)| ≤ α for all x whereas the third inequal-
ity follows from Definition 1.

C. Proof of Lemma 2
For each local expert i, let us denote Li(w) ,
Ex[DKL(qi(y|x;w)‖pi(y|`i(x,Di);ω))] and L̂i(w) ,
1
n

∑n
t=1 DKL(qi(y|x(t);w)‖pi(y|`i(x(t),Di);ω)) where

{x(t)}nt=1 are drawn i.i.d from P(x).

Thus, it follows that Li(w) = Ex[L̂i(w)] and since
DKL(qi(y|x;w)‖pi(y|`i(x,Di);ω)) is bounded within
(0, η) (see Assumption 1), we can bound the difference
between Li(w) and L̂i(w) using Hoeffding inequality:

P
(
|Li(w)− L̂i(w)| ≤ ε

)
≥ 1− exp

(
−2nε2

η2

)
(25)

Setting δ/2 = exp(−2nε2/η2) and solving for n yields
n = (η2/2ε2) log(2/δ). That is, if L̂i(w) is computed
using n = (η2/2ε2) log(2/δ) data points, then for each w,
the following holds with probability at least 1− δ/2:∣∣∣Li(w)− L̂i(w)

∣∣∣ ≤ ε (26)

Let w∗i , minw Li(w). By the union bound, the
above inequality holds simultaneously for w∗i and ŵi ,
minw L̂i(w) (solving for ŵi is detailed in Section 4.1) with

4We implicitly assume that the maximizer of pi are unique.
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probability at least 1− δ. When that happens, we have

Li(ŵi) ≤ L̂i(ŵi) + ε

≤ L̂i(w
∗
i ) + ε

≤ Li(w
∗
i ) + 2ε = θ + 2ε (27)

where the first and third inequalities follows directly from
applying Eq. (26) above to ŵi and w∗i , respectively. The
second inequality follows from the definition of ŵi and the
last equality follows from the above definition of θ, i.e.,
θ , mini Li(w

∗
i )

D. Proof of Theorem 1
To prove this result, let us recall that Li(ŵi) ,
E[DKL(qi(y|x; ŵi)‖pi(y|`i(x,Di);ω))]. Thus, by
Markov inequality, it follows with probability at least
1− 2 log 2Li(ŵi)/α

2 that:

DKL(qi(y|x; ŵi)‖pi(y|`i(x,Di);ω)) ≤
α2

2 log 2
(28)

When this happens, by Lemma 1, it further follows that qi
and pi agree on the prediction of x. That is, with probability
at least 1− 2 log 2Li(ŵi)/α

2, E happens. Now, applying
Lemma 2 which states that with probability at least 1− δ,
Li(ŵi) ≤ θ + 2ε. Plugging this into the above expression
of 1− 2 log 2Li(ŵi)/α

2 thus yields:

P(E) ≥ 1− 2 log 2
Li(ŵi)

α2
,

≥ 1− 2

α2
(θ + 2ε) log 2 . (29)

The inequality above only holds with probability 1− δ since
Li(ŵi) ≤ θ + 2ε only happens with probability 1 − δ, as
shown in Lemma 2 above.


